Research Article
PDF Mendeley EndNote BibTex Cite

The Investigation of Hardness and Microstructural Properties of A356 Alloy Shaped by Semi-Solid Molding Method Using Different Mold and Furnace Temperatures

Year 2022, Volume 14, Issue 1, 256 - 261, 31.01.2022
https://doi.org/10.29137/umagd.1038327

Abstract

In this study, were investigated the microstructure, hardness and granulometry of the A356 alloy produced of different furnace and mold temperatures by the semi-solid molding method. A356 alloy powders were mixed in the vibrating mill for 15 minutes, after green compacts were produced under 800 MPa pressure and Ø12x8 mm dimensions. In the processes semi-solid of green compacts used two different furnace (590 °C and 600 °C) and mold temperatures (350 °C and 550 °C). Green compacts were rapidly cooled to room temperature after 1 minute pressed at specified furnace and mold temperatures. In the studies, were seen that the furnace and mold temperature is important parameters for the process semi-solid molding. In the microstructure were determined that has been achieved sphericity to a large extent. The highest sphericity rate was obtained as 64% at 590 °C furnace and 550 °C mold temperature. In the grain size distribution results, fine-grained structure was obtained at 590 °C furnace and 350 °C mold temperature. In the hardness results, the highest hardness was obtained at the mold and furnace temperature (590 ° C furnace, 350 ° C mold) where the fine grain structure was obtained.

References

  • D. K. Dwivedi, (2004), Sliding temperature and wear behaviour of cast Al-Si-Mg alloys, Material Science and Engineering A, 382 (1-2), 328–334.
  • D. Özyürek, (2011), The effect of semi-solid processing parameters on microstructure in Al-7wt.Si alloy Scientific Research and Essays, 6(29), 6222-6226.
  • D. Özyürek, M. Yıldırım, İ. Çiftçi, (2012), The tribological properties of A356-SiCp metal-matrix composites fabricated by thixomoulding technique, Science and Engineering of Composite Materials, 19(4), 351-356.
  • D. Ozyurek, T. Tunçay, H. Evlen, İ. Ciftci, (2015), Synthesis, characterization and dry sliding wear behavior of in-situ formed TiAl3 precipitate reinforced A356 alloy produced by mechanical alloying method, Material Research, 18(4), 813–820.
  • E. J. Zoqui, M. Paes, M. H. Robert, (2004), Effect of macrostructure and microstructure on the viscosity of the A356 alloy in the semisolid state, Journal of Materials Processing Technology, 153, 300-306.
  • H. Aztekin, D. Ōzyūrek, K. Çetinkaya, (2010), Production of hypoeutectic Αl-Si alloy-based metal matrix composite with thixomoulding processing, High Temperature Materials and Processes, 29(3), 169-178.
  • H. J. Kim, J. M. Lee, Y. H. Cho, S. Y. Sung, B. S. Han, Y. S. Ahn, (2012), Microstructures and wear properties of Al-Mg-Si alloy with the addition of ball-milled CoNi powders, Material and Characterization, 70, 137–144.
  • H. V. Atkinson, D. Liu, (2008), Microstructural coarsening of semisolid aluminium alloys, Materials Science and Engineering: A, 496(1-2), 439-446.
  • Idegomori, T. (1998). The manufacturing of automobile parts using semi-solid metal processing. In Proc. 5th International Conference on Semi-Solid Processing of Alloys and Composites Colorado, USA, June 23-25.
  • M. Yildirim, D. Ozyurek, (2014), The effects of mould materials on microstructure and mechanical properties of cast a356 alloy,” Journal of Advanced Material and Processes, 2(3–12).
  • Otarawanna S., Dahle A.K., (2011), Casting of aluminium alloys”, Woodhead Publishing Series in Metals and Surface Engineering, 141-154
  • Özyürek, D., Aktar, N., Aztekin, H. (2008), Design and construction of a thixo forming unit and production of Al–Si alloys. Materials & Design, 29(5), 1070-1074.
  • Şimşek İ., Şimşek D. Özyürek D., (2020), Yarı katı kalıplama yöntemi ile üretilen farklı miktarlarda SiC takviyeli A356 matrisli kompozit malzemelerin aşınma performansının incelenmesi, Politeknik Dergisi, 23(4), 1237-1243.
  • Şimşek, İ., Şimşek, D., Özyürek, D. (2020), Investigation of the Effect of Ni Amount on the Wear Performance of A356 Cast Aluminum Alloys. Metallurgist, 63(9-10), 993-1001
  • T. Laha, A. Agarwal, T. McKechnie, K. Rea, S. Seal, (2005), Synthesis of bulk nanostructured aluminum alloy component through vacuum plasma spray technique, Acta Material, 53(20), 5429–5438.
  • T. Tuncay, S. Tekeli, D. Ozyurek, (2013), Difüzörlü ve difüzörsüz yolluk sistemlerinin A356 alaşımının mekanik özelliklerine etkisi, Gazi University Journal of Engineering and Architecture, 28(2), 241–249.
  • Tzimas, E., Zavaliangos, A. (2000). Evaluation of volume fraction of solid in alloys formed by semisolid processing. Journal of Materials Science, 35(21), 5319-5330.

Farklı Kalıp ve Fırın Sıcaklıkları Kullanılarak Yarı Katı Kalıplama Yöntemi ile Şekillendirilen A356 Alaşımının Sertlik ve Mikroyapı Özelliklerinin İncelenmesi

Year 2022, Volume 14, Issue 1, 256 - 261, 31.01.2022
https://doi.org/10.29137/umagd.1038327

Abstract

Bu çalışmada, yarı katı kalıplama yöntemi ile farklı fırın ve kalıp sıcaklıklarında üretilen A356 alaşımının mikroyapı, sertlik ve tane boyutu dağılımı incelenmiştir. A356 alaşımı tozlar, titreşimli değirmende 15 dakika karıştırılmış ve ardından 800 MPa basınç altında ve Ø12x8 mm boyutlarında ham numuneler üretilmiştir. Ham numunelerin yarı katı işlemlerinde iki farklı fırın (590 °C ve 600 °C) ve kalıp sıcaklıkları (350 °C ve 550 °C) kullanılmıştır. Ham numuneler, belirtilen fırın ve kalıp sıcaklıklarında 1 dakika preslendikten sonra hızla oda sıcaklığına soğutulmuştur. Yapılan çalışmalarda fırın ve kalıp sıcaklığının yarı katı kalıplama işlemi için önemli parametreler olduğu görülmüştür. Mikroyapı da büyük ölçüde küreselliğin sağlandığı tespit edilmiştir. En yüksek küresellik oranı 590 °C fırın ve 550 °C kalıp sıcaklığında %64 olarak elde edilmiştir. Tane boyutu dağılım sonuçlarında 590 °C fırın ve 350 °C kalıp sıcaklığında ince taneli yapı elde edilmiştir. Sertlik sonuçlarında en yüksek sertlik, ince tane yapının elde edildiği kalıp ve fırın sıcaklığında (590°C fırın, 350°C kalıp) elde edilmiştir.

References

  • D. K. Dwivedi, (2004), Sliding temperature and wear behaviour of cast Al-Si-Mg alloys, Material Science and Engineering A, 382 (1-2), 328–334.
  • D. Özyürek, (2011), The effect of semi-solid processing parameters on microstructure in Al-7wt.Si alloy Scientific Research and Essays, 6(29), 6222-6226.
  • D. Özyürek, M. Yıldırım, İ. Çiftçi, (2012), The tribological properties of A356-SiCp metal-matrix composites fabricated by thixomoulding technique, Science and Engineering of Composite Materials, 19(4), 351-356.
  • D. Ozyurek, T. Tunçay, H. Evlen, İ. Ciftci, (2015), Synthesis, characterization and dry sliding wear behavior of in-situ formed TiAl3 precipitate reinforced A356 alloy produced by mechanical alloying method, Material Research, 18(4), 813–820.
  • E. J. Zoqui, M. Paes, M. H. Robert, (2004), Effect of macrostructure and microstructure on the viscosity of the A356 alloy in the semisolid state, Journal of Materials Processing Technology, 153, 300-306.
  • H. Aztekin, D. Ōzyūrek, K. Çetinkaya, (2010), Production of hypoeutectic Αl-Si alloy-based metal matrix composite with thixomoulding processing, High Temperature Materials and Processes, 29(3), 169-178.
  • H. J. Kim, J. M. Lee, Y. H. Cho, S. Y. Sung, B. S. Han, Y. S. Ahn, (2012), Microstructures and wear properties of Al-Mg-Si alloy with the addition of ball-milled CoNi powders, Material and Characterization, 70, 137–144.
  • H. V. Atkinson, D. Liu, (2008), Microstructural coarsening of semisolid aluminium alloys, Materials Science and Engineering: A, 496(1-2), 439-446.
  • Idegomori, T. (1998). The manufacturing of automobile parts using semi-solid metal processing. In Proc. 5th International Conference on Semi-Solid Processing of Alloys and Composites Colorado, USA, June 23-25.
  • M. Yildirim, D. Ozyurek, (2014), The effects of mould materials on microstructure and mechanical properties of cast a356 alloy,” Journal of Advanced Material and Processes, 2(3–12).
  • Otarawanna S., Dahle A.K., (2011), Casting of aluminium alloys”, Woodhead Publishing Series in Metals and Surface Engineering, 141-154
  • Özyürek, D., Aktar, N., Aztekin, H. (2008), Design and construction of a thixo forming unit and production of Al–Si alloys. Materials & Design, 29(5), 1070-1074.
  • Şimşek İ., Şimşek D. Özyürek D., (2020), Yarı katı kalıplama yöntemi ile üretilen farklı miktarlarda SiC takviyeli A356 matrisli kompozit malzemelerin aşınma performansının incelenmesi, Politeknik Dergisi, 23(4), 1237-1243.
  • Şimşek, İ., Şimşek, D., Özyürek, D. (2020), Investigation of the Effect of Ni Amount on the Wear Performance of A356 Cast Aluminum Alloys. Metallurgist, 63(9-10), 993-1001
  • T. Laha, A. Agarwal, T. McKechnie, K. Rea, S. Seal, (2005), Synthesis of bulk nanostructured aluminum alloy component through vacuum plasma spray technique, Acta Material, 53(20), 5429–5438.
  • T. Tuncay, S. Tekeli, D. Ozyurek, (2013), Difüzörlü ve difüzörsüz yolluk sistemlerinin A356 alaşımının mekanik özelliklerine etkisi, Gazi University Journal of Engineering and Architecture, 28(2), 241–249.
  • Tzimas, E., Zavaliangos, A. (2000). Evaluation of volume fraction of solid in alloys formed by semisolid processing. Journal of Materials Science, 35(21), 5319-5330.

Details

Primary Language Turkish
Subjects Engineering, Mechanical
Journal Section Articles
Authors

Doğan ŞİMŞEK (Primary Author)
MİLLİ SAVUNMA ÜNİVERSİTESİ
0000-0002-5509-9314
Türkiye


İjlal ŞİMŞEK
MİLLİ SAVUNMA ÜNİVERSİTESİ, KARA ASTSUBAY MESLEK YÜKSEKOKULU, MÜDÜRLÜK
0000-0001-6542-8567
Türkiye


Dursun ÖZYÜREK
KARABÜK ÜNİVERSİTESİ
0000-0002-8326-9982
Türkiye

Publication Date January 31, 2022
Published in Issue Year 2022, Volume 14, Issue 1

Cite

APA Şimşek, D. , Şimşek, İ. & Özyürek, D. (2022). Farklı Kalıp ve Fırın Sıcaklıkları Kullanılarak Yarı Katı Kalıplama Yöntemi ile Şekillendirilen A356 Alaşımının Sertlik ve Mikroyapı Özelliklerinin İncelenmesi . International Journal of Engineering Research and Development , 14 (1) , 256-261 . DOI: 10.29137/umagd.1038327

All Rights Reserved. Kırıkkale University, Faculty of Engineering.