Research Article
PDF Mendeley EndNote BibTex Cite

A Study On The siRNA Transfection Reagent Potential of Levan-Capped Gold Nanoparticles Synthesized by Laser Ablation

Year 2022, Volume 14, Issue 1, 282 - 298, 31.01.2022
https://doi.org/10.29137/umagd.943584

Abstract

Here, gold nanoparticle (AuNP)-based small interfering RNA (siRNA) vector was developed. AuNPs synthesized by pulsed laser ablation in liquid (PLAL) method in a medium containing levan polysaccharide (Levan-AuNP) were characterized, then utilized in siRNA transfection studies on MCF-7 breast cancer cells. The interaction between non-targeted siRNA sequence and Levan-AuNP-siRNA was found to be 48% via A260 absorbance measurements. Optimal conditions for siRNA transfection in MCF-7 cells were determined by preparing different concentrations of Levan-AuNP and 50 nM siGLO Green transfection indicator. In transfection studies, initially triple fluorescent staining protocols (siGLO Green, propidium iodide (PI), and Hoechst 33342) were conducted and no cytotoxicity was observed. In 1 day-incubation, the transfection was realized especially in the highest concentration Levan-AuNP group while it was unsuccessful in siGLO Green group alone. Transfection was observed in all groups after 2 and 4 days of incubation. In the secondary transfection studies without PI and Hoechst, the fluorescence intensity of siGLO Green increased significantly, and stronger and punctuate fluorescence emission was seen in Levan-AuNP-siGLO Green complexes. Regarding the mean fluorescence intensity measurements, a statistical significance was confirmed in all Levan-AuNP groups. As a whole, the developed Levan-AuNP could be proposed as alternatives to the existing transfection agents.

References

  • Akturk, O. (2020). Colloidal stability and biological activity evaluation of microbial exopolysaccharide levan-capped gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 192, 111061.
  • Akturk, O., Erdemli, O., Cagdas Tunali, B. (2019). Gold nanocomposites for biomedical applications. Materials for Biomedical Engineering: Bioactive materials, properties, and applications. Valentina Grumezescu, Alexandru Mihai Grumezescu (eds),. Netherlands: Elsevier, https://doi.org/10.1016/B978-0-12-818431-8.00015-5, 485-526.
  • Akturk, O., Gün Gök, Z., Das, T. M., Erdemli, O. (2018). Synthesis and characterization of sericin-capped gold nanoparticles. Journal of the Faculty of Engineering and Architecture of Gazi University, 33, 675–684.
  • Akturk, O., Gün Gök, Z., Erdemli, O., Yigitoglu, M. (2019). One-pot facile synthesis of silk sericin-capped gold nanoparticles by UVC radiation: Investigation of stability, biocompatibility, and antibacterial activity. Journal of Biomedical Materials Research Part A, 107, 2667-2679.
  • Alireza, S., Marie, S. J., Saeed, M., Hadi, R. N., Zahra, N., Sadat, H. E., Ingo, B., Javad, M. S., Heiko, L. (2019). Development and Clinical Translation of Approved Gene Therapy Products for Genetic Disorders. Frontiers in Genetics, 10, 868.
  • Bailly, A. L., Correard, F., Popov, A., Tselikov, G., Chaspoul, F., Appay, R., Al-Kattan, A., Kabashin, A.V., Braguer, D., Esteve, M. A. (2019). In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci Rep, 9, 12890.
  • Brodeur, M. R., Brissette, L., Falstrault, L., Luangrath, V., Moreau, R. (2008). Scavenger receptor of class B expressed by osteoblastic cells are implicated in the uptake of cholesteryl ester and estradiol from LDL and HDL3. J Bone Miner Res, 23, 326–37.
  • Cebrián, V., Martín-Saavedra, F., Yagüe, C., Arruebo, M., Santamaría, J., Vilaboa, N. (2011). Size-dependent transfection efficiency of PEI-coated gold nanoparticles. Acta Biomaterialia, 7(10), 3645-3655.
  • Chang, K. L., Higuchi, Y., Kawakami, S., Yamashita, F., Hashida, M. (2011). Development of lysine-histidine dendron modified chitosan for improving transfection efficiency in HEK293 cells. J Control Release, 156(2), 195-202.
  • Chiu, Y. L., Ali, A., Chu, C. Y., Cao, H., Rana, T. M. (2004). Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem. Biol., 11, 1165–1175.
  • Ding, Y., Jiang, Z., Saha, K., Kim, C. S., Kim, S. T., Landis, R. F., Rotello, V. M. (2014). Gold Nanoparticles for Nucleic Acid Delivery. Molecular Therapy, 22(6), 1075-1083.
  • El-Andaloussi, S., Johansson, H. J., Lundberg, P., Langel, U. (2006). Induction of splice correction by cell-penetrating peptide nucleic acids. J. Gene Med., 8, 1262–1273.
  • Ferreira, D., Fontinha, D., Martins, C., Pires, D., Fernandes, A. R., Baptista, P. V. (2020). Gold Nanoparticles for Vectorization of Nucleic Acids for Cancer Therapeutics. Molecules, 25(15), 3489.
  • Gemeinhart, R. A., Luo, D., Saltzman, W. M. (2005). Cellular Fate of a Modular DNA Delivery System Mediated by Silica Nanoparticles. Biotechnol Prog, 21, 532–7.
  • Godbey, W. T., Mikos, A. G. (2001). Recent progress in gene delivery using non-viral transfer complexes. J Control Release, 72, 115–25.
  • Goodman, C. M., McCusker, C. D., Yilmaz, T., Rotello, V. M. (2004). Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem, 15, 897–900.
  • Hardee, C. L., Arévalo-Soliz, L. M., Hornstein, B. D. (2017). Advances in Non-Viral DNA Vectors for Gene Therapy. Genes, 8(2), 65.
  • Kamaruzman, N. I., Tiash, S., Ashaie, M., Chowdhury, E. H. (2018). siRNAs Targeting Growth Factor Receptor and Anti-Apoptotic Genes Synergistically Kill Breast Cancer Cells through Inhibition of MAPK and PI-3 Kinase Pathways. Biomedicines, 6(3), 73.
  • Khan, W., Hosseinkhani, H., Ickowicz, D., Hong, P. D., Yu, D. S., Dom, A. J. (2012). Polysaccharide gene transfection agents. Acta Biomaterialia, 8(12), 4224-4232.
  • Kim, S. J., Baeb, P. K., Chung, B. H. (2015). Self-assembled levan nanoparticles for targeted breast cancer imaging. Chemical Communications, 51, 107-110.
  • Koşarsoy Ağçeli, G., Cihangir, N. (2020). Nano-sized biopolymer levan: Its antimicrobial, anti-biofilm and anti-cancer effects. Carbohydrate Research, 494, 108068.
  • Krzysztoń, R., Woschée, D., Reiser, A., Schwake, G., Strey, H. H., Rädler, J.O. (2019). Single-cell kinetics of siRNA-mediated mRNA degradation. Nanomedicine: Nanotechnology, Biology and Medicine, 21, 102077.
  • Kumar, S., Diwan, A., Singh, P., Gulati, S., Choudhary, D., Mongia, A., Shuklaa, S., Gupta, A. (2019). Functionalized gold nanostructures: promising gene delivery vehicles in cancer treatment. RSC Adv., 9, 23894-23907.
  • Li, P., Li, D., Zhang, L., Li, G., Wang, E. (2008). Cationic lipid bilayer coated gold nanoparticles-mediated transfection of mammalian cells. Biomaterials, 29, 3617–24.
  • Li, W., Wang, G., Liang, W., Kang, K., Guo, K., Zhang, Y. (2014). Integrin β3 Is Required in Infection and Proliferation of Classical Swine Fever Virus. PLoS ONE, 9(10), e110911.
  • Maciel, J. C., Andrad, P. L., Neri, D. F. M., Carvalho, Jr. L. B., Cardoso, C. A., Calazans, G. M. T., Aguiar, J. A., Silva, M. P. C. (2012). Preparation and characterization of magnetic levan particles as matrix for trypsin immobilization. J Magn Magn Mater, 324, 1312–1316.
  • Melamed, J. R., Riley, R. S., Valcourt, D. M., Billingsley, M. M., Kreuzberger, N. L., Day, E. S. (2017). Quantification of siRNA Duplexes Bound to Gold Nanoparticle Surfaces. Biomedical Nanotechnology. Methods in Molecular Biology, vol 1570, Petrosko S., Day E. (eds),. Humana Press, New York, NY.,1-15.
  • Naharuddin, N. Z. A., Sadrolhosseini, A. R., Abu Bakar, M. H., Tamchek, N., Mahdi, M. A. (2020). Laser ablation synthesis of gold nanoparticles in tetrahydrofuran. Opt. Mater. Express, 10, 323-331.
  • Okoampah, E., Mao, Y., Yang, S., Sun, S., Zhou, C. (2020). Gold nanoparticles–biomembrane interactions: From fundamental to simulation. Colloids and Surfaces B: Biointerfaces, 196, 111312.
  • Queiroz, E. A. I. F., Fortes, Z. B., Cunha, M. A. A., Kazak Sarilmiser, H., Dekker, A. M. B., Toksoy Öner, E., Dekker, R. F. H., Khaper, N. (2017). Levan promotes antiproliferative and pro-apoptotic effects in MCF-7 breast cancer cells mediated by oxidative stress. International Journal of Biological Macromolecules, 102, 565-570.
  • Rao, R. C., Zacks, D. N. (2014). Cell and gene therapy, Cell-Based Therapy for Retinal Degenerative Disease. vol 53, Casaroli-Marano RP, Zarbin MA (eds), Dev. Ophthalmol. Basel, Karger, doi: 10.1159/000357376.
  • Remant Bahadur, K. C., Landry, B., Montazeri Aliabadi, H., Lavasanifar, A., Uludag, H. (2011). Lipid substitution on low molecular weight (0.6–2.0 kDa) polyethylenimine leads to a higher zeta potential of plasmid DNA and enhances transgene expression. Acta Biomater, 7(5), 2209-17, 2011.
  • Roesler, S., Koch, F., Schmehl, T., Weissmann, N., Seeger, W., Gessler, T., Kissel, T. (2011). Amphiphilic, low molecular weight poly(ethylene imine) derivatives with enhanced stability for efficient pulmonary gene delivery. Gene Med, 13, 123–33.
  • Sajid, M. I., Moazzam, M., Kato, S., Cho, K. Y., Tiwari, R. K. (2020). Overcoming Barriers for siRNA Therapeutics: From Bench to Bedside. Pharmaceuticals, 13(10), 294.
  • Schiroli, D., Gómara, M. J., Maurizi, E., Atkinson, S. D., Mairs, L., Christie, K. A., Cobice, D. F., McCrudden, C. M., Nesbit, M.A., Haro, I., Moore, T. (2019). Effective In Vivo Topical Delivery of siRNA and Gene Silencing in Intact Corneal Epithelium Using a Modified Cell-Penetrating Peptide, Molecular Therapy Nucleic Acids. 17, 891-906.
  • Sezer, A. D., Kazak, H., Toksoy Öner, E., Akbuğa, J. (2011). Levan-based nanocarrier system for peptide and protein drug delivery: Optimization and influence of experimental parameters on the nanoparticle characteristics. Carbohydrate Polymers, 84(1), 358-363.
  • Sezer, A. D., Kazak Sarılmışer, H., Rayaman, E., Çevikbaş, A., Toksoy Öner, E., Akbuğa, J. (2017). Development and characterization of vancomycin-loaded levan-based microparticular system for drug delivery. Pharm Dev Technol, 22(5), 627-634.
  • Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R. R., Sastry, M. (2005). Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir, 21, 10644–54.
  • Srikanth, R., Sundhar Reddy C. H. S. S., Siddartha, G., Ramaiah, M. J., Uppuluri, K. B. (2015). Review on production, characterization and applications of microbial levan. Carbohydrate Polymers, 120, 102-114.
  • Sylvestre, J. P., Poulin, S., Kabashin, A. V., Sacher, E., Meunier, M., Luong, J. H. T. (2004). Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J. Phys. Chem. B, 108, 16864–16869.
  • Uboldi, C., Bonacchi, D., Lorenzi, G., Hermanns, M. I., Pohl, C., Baldi, G., Unger, R. E., Kirkpatrick, C. J. (2009). Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441. Particle and Fibre Toxicology, 6, 18–30.
  • van Asbeck A. H., Beyerle, A., McNeill, H., Bovee-Geurts, P. H., Lindberg, S., Verdurmen, W. P., Hällbrink, M., Langel, U., Heidenreich, O., Brock, R. (2013). Molecular parameters of siRNA-cell penetrating peptide nanocomplexes for efficient cellular delivery. ACS Nano, 7, 3797-3807.
  • Xue, H. Y., Liu, S., Wong, H. L. (2014). Nanotoxicity: a key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine, 9(2), 295-312.

Lazer Ablasyonu ile Sentezlenmiş Levan Kaplı Altın Nanoparçacıkların siRNA Transfeksiyon Ajanı Olma Potansiyeli Üstüne Çalışma

Year 2022, Volume 14, Issue 1, 282 - 298, 31.01.2022
https://doi.org/10.29137/umagd.943584

Abstract

Bu çalışmada, altın nanoparçacık (AuNP) temelli kısa interferanslı RNA (siRNA) transfeksiyon vektörü tasarlanmıştır. Sıvı içinde atımlı lazer ablasyon yöntemiyle (PLAL) levan polisakkariti içeren ortamda sentezlenen AuNP’ler (Levan-AuNP), karakterizasyon testlerinin ardından MCF-7 meme kanseri hücrelerinde siRNA transfeksiyon çalışmalarında kullanılmıştır. Hedefsiz siRNA sekansı ile gerçekleşen %48’lik Levan-AuNP-siRNA etkileşimi A260 absorbans ölçümleriyle bulunmuştur. Farklı derişimlerde Levan-AuNP ve 50 nM siGLO Green transfeksiyon indikatörü hazırlanarak MCF-7 hücrelerindeki optimum siRNA transfeksiyon koşulları belirlenmiştir. Transfeksiyon çalışmalarında öncelikle üçlü floresan boyama (siGLO Green, propidyum iyodür (PI) ve Hoechst 33342) yapılmış ve sitotoksisite görülmemiştir. Özellikle en yüksek derişimdeki Levan-AuNP grubunda ilk günde transfeksiyon gerçekleşirken, tek başına siGLO Green grubunda transfeksiyon gerçekleşmemiştir. 2 ve 4 günlük inkübasyonda ise tüm gruplarda transfeksiyon gözlemlenmiştir. PI ve Hoechst kullanılmadan yapılan ikinci transfeksiyon çalışmalarında ise siGLO Green floresan şiddetinin belirgin şekilde arttığı ve özellikle Levan-AuNP-siGLO Green komplekslerinde daha kuvvetli ve noktalı bir floresan ışıma görülmüştür. Ortalama floresan şiddetleri ölçümlerine göre, tüm Levan-AuNP gruplarında istatistiksel açıdan anlamlı ölçüde artış bulunmuştur. Sonuç olarak, bu çalışmada geliştirilen Levan-AuNP’nin, mevcut transfeksiyon ajanlarına alternatif olabileceği gösterilmiştir.

References

  • Akturk, O. (2020). Colloidal stability and biological activity evaluation of microbial exopolysaccharide levan-capped gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 192, 111061.
  • Akturk, O., Erdemli, O., Cagdas Tunali, B. (2019). Gold nanocomposites for biomedical applications. Materials for Biomedical Engineering: Bioactive materials, properties, and applications. Valentina Grumezescu, Alexandru Mihai Grumezescu (eds),. Netherlands: Elsevier, https://doi.org/10.1016/B978-0-12-818431-8.00015-5, 485-526.
  • Akturk, O., Gün Gök, Z., Das, T. M., Erdemli, O. (2018). Synthesis and characterization of sericin-capped gold nanoparticles. Journal of the Faculty of Engineering and Architecture of Gazi University, 33, 675–684.
  • Akturk, O., Gün Gök, Z., Erdemli, O., Yigitoglu, M. (2019). One-pot facile synthesis of silk sericin-capped gold nanoparticles by UVC radiation: Investigation of stability, biocompatibility, and antibacterial activity. Journal of Biomedical Materials Research Part A, 107, 2667-2679.
  • Alireza, S., Marie, S. J., Saeed, M., Hadi, R. N., Zahra, N., Sadat, H. E., Ingo, B., Javad, M. S., Heiko, L. (2019). Development and Clinical Translation of Approved Gene Therapy Products for Genetic Disorders. Frontiers in Genetics, 10, 868.
  • Bailly, A. L., Correard, F., Popov, A., Tselikov, G., Chaspoul, F., Appay, R., Al-Kattan, A., Kabashin, A.V., Braguer, D., Esteve, M. A. (2019). In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci Rep, 9, 12890.
  • Brodeur, M. R., Brissette, L., Falstrault, L., Luangrath, V., Moreau, R. (2008). Scavenger receptor of class B expressed by osteoblastic cells are implicated in the uptake of cholesteryl ester and estradiol from LDL and HDL3. J Bone Miner Res, 23, 326–37.
  • Cebrián, V., Martín-Saavedra, F., Yagüe, C., Arruebo, M., Santamaría, J., Vilaboa, N. (2011). Size-dependent transfection efficiency of PEI-coated gold nanoparticles. Acta Biomaterialia, 7(10), 3645-3655.
  • Chang, K. L., Higuchi, Y., Kawakami, S., Yamashita, F., Hashida, M. (2011). Development of lysine-histidine dendron modified chitosan for improving transfection efficiency in HEK293 cells. J Control Release, 156(2), 195-202.
  • Chiu, Y. L., Ali, A., Chu, C. Y., Cao, H., Rana, T. M. (2004). Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem. Biol., 11, 1165–1175.
  • Ding, Y., Jiang, Z., Saha, K., Kim, C. S., Kim, S. T., Landis, R. F., Rotello, V. M. (2014). Gold Nanoparticles for Nucleic Acid Delivery. Molecular Therapy, 22(6), 1075-1083.
  • El-Andaloussi, S., Johansson, H. J., Lundberg, P., Langel, U. (2006). Induction of splice correction by cell-penetrating peptide nucleic acids. J. Gene Med., 8, 1262–1273.
  • Ferreira, D., Fontinha, D., Martins, C., Pires, D., Fernandes, A. R., Baptista, P. V. (2020). Gold Nanoparticles for Vectorization of Nucleic Acids for Cancer Therapeutics. Molecules, 25(15), 3489.
  • Gemeinhart, R. A., Luo, D., Saltzman, W. M. (2005). Cellular Fate of a Modular DNA Delivery System Mediated by Silica Nanoparticles. Biotechnol Prog, 21, 532–7.
  • Godbey, W. T., Mikos, A. G. (2001). Recent progress in gene delivery using non-viral transfer complexes. J Control Release, 72, 115–25.
  • Goodman, C. M., McCusker, C. D., Yilmaz, T., Rotello, V. M. (2004). Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem, 15, 897–900.
  • Hardee, C. L., Arévalo-Soliz, L. M., Hornstein, B. D. (2017). Advances in Non-Viral DNA Vectors for Gene Therapy. Genes, 8(2), 65.
  • Kamaruzman, N. I., Tiash, S., Ashaie, M., Chowdhury, E. H. (2018). siRNAs Targeting Growth Factor Receptor and Anti-Apoptotic Genes Synergistically Kill Breast Cancer Cells through Inhibition of MAPK and PI-3 Kinase Pathways. Biomedicines, 6(3), 73.
  • Khan, W., Hosseinkhani, H., Ickowicz, D., Hong, P. D., Yu, D. S., Dom, A. J. (2012). Polysaccharide gene transfection agents. Acta Biomaterialia, 8(12), 4224-4232.
  • Kim, S. J., Baeb, P. K., Chung, B. H. (2015). Self-assembled levan nanoparticles for targeted breast cancer imaging. Chemical Communications, 51, 107-110.
  • Koşarsoy Ağçeli, G., Cihangir, N. (2020). Nano-sized biopolymer levan: Its antimicrobial, anti-biofilm and anti-cancer effects. Carbohydrate Research, 494, 108068.
  • Krzysztoń, R., Woschée, D., Reiser, A., Schwake, G., Strey, H. H., Rädler, J.O. (2019). Single-cell kinetics of siRNA-mediated mRNA degradation. Nanomedicine: Nanotechnology, Biology and Medicine, 21, 102077.
  • Kumar, S., Diwan, A., Singh, P., Gulati, S., Choudhary, D., Mongia, A., Shuklaa, S., Gupta, A. (2019). Functionalized gold nanostructures: promising gene delivery vehicles in cancer treatment. RSC Adv., 9, 23894-23907.
  • Li, P., Li, D., Zhang, L., Li, G., Wang, E. (2008). Cationic lipid bilayer coated gold nanoparticles-mediated transfection of mammalian cells. Biomaterials, 29, 3617–24.
  • Li, W., Wang, G., Liang, W., Kang, K., Guo, K., Zhang, Y. (2014). Integrin β3 Is Required in Infection and Proliferation of Classical Swine Fever Virus. PLoS ONE, 9(10), e110911.
  • Maciel, J. C., Andrad, P. L., Neri, D. F. M., Carvalho, Jr. L. B., Cardoso, C. A., Calazans, G. M. T., Aguiar, J. A., Silva, M. P. C. (2012). Preparation and characterization of magnetic levan particles as matrix for trypsin immobilization. J Magn Magn Mater, 324, 1312–1316.
  • Melamed, J. R., Riley, R. S., Valcourt, D. M., Billingsley, M. M., Kreuzberger, N. L., Day, E. S. (2017). Quantification of siRNA Duplexes Bound to Gold Nanoparticle Surfaces. Biomedical Nanotechnology. Methods in Molecular Biology, vol 1570, Petrosko S., Day E. (eds),. Humana Press, New York, NY.,1-15.
  • Naharuddin, N. Z. A., Sadrolhosseini, A. R., Abu Bakar, M. H., Tamchek, N., Mahdi, M. A. (2020). Laser ablation synthesis of gold nanoparticles in tetrahydrofuran. Opt. Mater. Express, 10, 323-331.
  • Okoampah, E., Mao, Y., Yang, S., Sun, S., Zhou, C. (2020). Gold nanoparticles–biomembrane interactions: From fundamental to simulation. Colloids and Surfaces B: Biointerfaces, 196, 111312.
  • Queiroz, E. A. I. F., Fortes, Z. B., Cunha, M. A. A., Kazak Sarilmiser, H., Dekker, A. M. B., Toksoy Öner, E., Dekker, R. F. H., Khaper, N. (2017). Levan promotes antiproliferative and pro-apoptotic effects in MCF-7 breast cancer cells mediated by oxidative stress. International Journal of Biological Macromolecules, 102, 565-570.
  • Rao, R. C., Zacks, D. N. (2014). Cell and gene therapy, Cell-Based Therapy for Retinal Degenerative Disease. vol 53, Casaroli-Marano RP, Zarbin MA (eds), Dev. Ophthalmol. Basel, Karger, doi: 10.1159/000357376.
  • Remant Bahadur, K. C., Landry, B., Montazeri Aliabadi, H., Lavasanifar, A., Uludag, H. (2011). Lipid substitution on low molecular weight (0.6–2.0 kDa) polyethylenimine leads to a higher zeta potential of plasmid DNA and enhances transgene expression. Acta Biomater, 7(5), 2209-17, 2011.
  • Roesler, S., Koch, F., Schmehl, T., Weissmann, N., Seeger, W., Gessler, T., Kissel, T. (2011). Amphiphilic, low molecular weight poly(ethylene imine) derivatives with enhanced stability for efficient pulmonary gene delivery. Gene Med, 13, 123–33.
  • Sajid, M. I., Moazzam, M., Kato, S., Cho, K. Y., Tiwari, R. K. (2020). Overcoming Barriers for siRNA Therapeutics: From Bench to Bedside. Pharmaceuticals, 13(10), 294.
  • Schiroli, D., Gómara, M. J., Maurizi, E., Atkinson, S. D., Mairs, L., Christie, K. A., Cobice, D. F., McCrudden, C. M., Nesbit, M.A., Haro, I., Moore, T. (2019). Effective In Vivo Topical Delivery of siRNA and Gene Silencing in Intact Corneal Epithelium Using a Modified Cell-Penetrating Peptide, Molecular Therapy Nucleic Acids. 17, 891-906.
  • Sezer, A. D., Kazak, H., Toksoy Öner, E., Akbuğa, J. (2011). Levan-based nanocarrier system for peptide and protein drug delivery: Optimization and influence of experimental parameters on the nanoparticle characteristics. Carbohydrate Polymers, 84(1), 358-363.
  • Sezer, A. D., Kazak Sarılmışer, H., Rayaman, E., Çevikbaş, A., Toksoy Öner, E., Akbuğa, J. (2017). Development and characterization of vancomycin-loaded levan-based microparticular system for drug delivery. Pharm Dev Technol, 22(5), 627-634.
  • Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R. R., Sastry, M. (2005). Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir, 21, 10644–54.
  • Srikanth, R., Sundhar Reddy C. H. S. S., Siddartha, G., Ramaiah, M. J., Uppuluri, K. B. (2015). Review on production, characterization and applications of microbial levan. Carbohydrate Polymers, 120, 102-114.
  • Sylvestre, J. P., Poulin, S., Kabashin, A. V., Sacher, E., Meunier, M., Luong, J. H. T. (2004). Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J. Phys. Chem. B, 108, 16864–16869.
  • Uboldi, C., Bonacchi, D., Lorenzi, G., Hermanns, M. I., Pohl, C., Baldi, G., Unger, R. E., Kirkpatrick, C. J. (2009). Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441. Particle and Fibre Toxicology, 6, 18–30.
  • van Asbeck A. H., Beyerle, A., McNeill, H., Bovee-Geurts, P. H., Lindberg, S., Verdurmen, W. P., Hällbrink, M., Langel, U., Heidenreich, O., Brock, R. (2013). Molecular parameters of siRNA-cell penetrating peptide nanocomplexes for efficient cellular delivery. ACS Nano, 7, 3797-3807.
  • Xue, H. Y., Liu, S., Wong, H. L. (2014). Nanotoxicity: a key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine, 9(2), 295-312.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ömer AKTÜRK
KIRIKKALE ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, BİYOMÜHENDİSLİK BÖLÜMÜ
0000-0002-0130-8803
Türkiye


Beste ÇAĞDAŞ TUNALI (Primary Author)
KIRIKKALE ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, BİYOMÜHENDİSLİK BÖLÜMÜ
0000-0003-2534-382X
Türkiye

Supporting Institution Kırıkkale Üniversitesi Bilimsel Araştırmalar Proje Koordinasyon Birimi
Project Number 2017/017
Thanks Bu proje Kırıkkale Üniversitesi Bilimsel Araştırmalar Proje Koordinasyon Birimi tarafından desteklenmiştir (No: 2017/017).
Publication Date January 31, 2022
Published in Issue Year 2022, Volume 14, Issue 1

Cite

APA Aktürk, Ö. & Çağdaş Tunalı, B. (2022). Lazer Ablasyonu ile Sentezlenmiş Levan Kaplı Altın Nanoparçacıkların siRNA Transfeksiyon Ajanı Olma Potansiyeli Üstüne Çalışma . International Journal of Engineering Research and Development , 14 (1) , 282-298 . DOI: 10.29137/umagd.943584

All Rights Reserved. Kırıkkale University, Faculty of Engineering.