Research Article
BibTex RIS Cite

Chlorella vulgaris Biyokütle Üretiminde Kültür Şartlarının Optimizasyonu

Year 2022, Volume: 14 Issue: 2, 581 - 589, 31.07.2022
https://doi.org/10.29137/umagd.1054221

Abstract

Bu çalışmada, C. vulgaris mikroalgal biyokütle üretiminin optimizasyonu incelenmiştir. Optimizasyon çalışmaları Design Expert programında Cevap Yüzey Metodu (RSM) ile oluşturulan deneysel çalışma tablosuna göre gerçekleştirilmiştir. Her bir deney 250 mL’lik erlenlerde 12 saat aydınlık (3000 lüx) 12 saat karanlık ve 25 °C’de yürütülmüştür. RSM deneylerinde bağımsız değişkenler olarak kültür hacmi, inokülasyon oranı ve kültür süresi; cevap değişkeni olarak ise üretilen algal biyokütle konsantrasyonu seçilmiştir. Algal biyokütle konsantrasyonları UV-Visible spektroskopisi ile ölçülmüştür. Optimizasyon çalışmaları sonucunda mikroalgal biyokütle üretimini en iyi temsil eden modelin kuadratik olduğu belirlenmiştir. Kuadratik model için ANOVA testlerinden geliştirilen model üzerinde çalışılan üç bağımsız değişkenin de önemli olduğu görülmüştür. Bununla beraber, inokülasyon oranının diğer bağımsız değişkenlere göre daha az etkili olduğu, hatta bu parametrenin kuadratik etkisinin model üzerinde etkili olmadığı saptanmıştır. Model üzerinde en etkili bağımsız değişkenin ise süre olduğu sonucuna ulaşılmıştır. RSM analizlerinden model üzerinde kültür hacmi-inokülasyon oranı ikili etkileşiminin önemli olduğu gözlenmiştir. İkili etkileşim grafiğinden çalışılan aralıkta yüksek inokülasyon oranı ve düşük kültür hacmi değerlerinde algal biyokütle konsantrasyonunun yüksek olduğu sonucuna varılmıştır. RSM ile ileri sürülen optimum C. vulgaris biyokütle üretim şartları 85,693 mL kültür hacmi, %12,152 inokülasyon oranı ve 16,952 gün süre olarak belirlenmiştir.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Alami, A. H., Alasad, S., Ali, M. & Alshamsi, M. (2021). Investigating Algae for Co2 Capture and Accumulation and Simultaneous Production of Biomass for Biodiesel Production. Science of the Total Environment, 759, 143529.
  • Anjos, M., Fernandes, B. D., Vicente, A. A., Teixeira, J. A. & Dragone, G. (2013). Optimization of Co2 Bio-Mitigation by Chlorella Vulgaris. Bioresource technology, 139, 149-154.
  • Ayatollahi, S. Z., Esmaeilzadeh, F. & Mowla, D. (2021). Integrated Co2 Capture, Nutrients Removal and Biodiesel Production Using Chlorella Vulgaris. Journal of Environmental Chemical Engineering, 9(2), 104763.
  • Aydın, G. Ş. (2019). Mikroalg Teknolojisi Ve Çevresel Kullanımı. Harran Üniversitesi Mühendislik Dergisi, 4(1), 81-92.
  • Azhand, N., Sadeghizadeh, A. & Rahimi, R. (2020). Effect of Superficial Gas Velocity on Co2 Capture from Air by Chlorella Vulgaris Microalgae in an Airlift Photobioreactor with External Sparger. Journal of Environmental Chemical Engineering, 8(4), 104022.
  • Barsanti, L. & Gualtieri, P. (2014). Algae: Anatomy, Biochemistry, and Biotechnology (Second Edi). Crc Press. In).
  • Bohlouli, A., Afshar, M. R., Aboutalebi, M. & Seyedein, S. (2016). Optimization of Tungsten Leaching from Low Manganese Wolframite Concentrate Using Response Surface Methodology (Rsm). International Journal of Refractory Metals and Hard Materials, 61, 107-114.
  • Brennan, L. & Owende, P. (2010). Biofuels from Microalgae—a Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products. Renewable and sustainable energy reviews, 14(2), 557-577.
  • Dissa, A., Desmorieux, H., Savadogo, P., Segda, B. & Koulidiati, J. (2010). Shrinkage, Porosity and Density Behaviour During Convective Drying of Spirulina. Journal of food Engineering, 97(3), 410-418.
  • Gong, X., Wang, Y. & Kuang, T. (2017). Zif-8-Based Membranes for Carbon Dioxide Capture and Separation. ACS Sustainable Chemistry & Engineering, 5(12), 11204-11214.
  • Ho, S.-H., Huang, S.-W., Chen, C.-Y., Hasunuma, T., Kondo, A. & Chang, J.-S. (2013). Characterization and Optimization of Carbohydrate Production from an Indigenous Microalga Chlorella Vulgaris Fsp-E. Bioresource technology, 135, 157-165.
  • Jia, Z., Liu, Y., Daroch, M., Geng, S. & Cheng, J. J. (2014). Screening, Growth Medium Optimisation and Heterotrophic Cultivation of Microalgae for Biodiesel Production. Applied biochemistry and biotechnology, 173(7), 1667-1679.
  • Kativu, E. (2011). Carbon Dioxide Absorption Using Fresh Water Algae and Identifying Potential Uses of Algal Biomass. Faculty of Engineering and the Built Enviroment, University of the Witwatersrand, Johannesburg.
  • Kazeem, M., Hossain, S., Hossain, M. & Razzak, S. (2018). Application of Central Composite Design to Optimize Culture Conditions of Chlorella Vulgaris in a Batch Photobioreactor: An Efficient Modeling Approach. Chemical Product and Process Modeling, 13(4).
  • Kong, W.-B., Hua, S.-F., Cao, H., Mu, Y.-W., Yang, H., Song, H. & Xia, C.-G. (2012). Optimization of Mixotrophic Medium Components for Biomass Production and Biochemical Composition Biosynthesis by Chlorella Vulgaris Using Response Surface Methodology. Journal of the Taiwan Institute of Chemical Engineers, 43(3), 360-367.
  • Kupgan, G., Abbott, L. J., Hart, K. E. & Colina, C. M. (2018). Modeling Amorphous Microporous Polymers for Co2 Capture and Separations. Chemical reviews, 118(11), 5488-5538. doi: 10.1021/acs.chemrev.7b00691
  • Moreira, D. & Pires, J. C. (2016). Atmospheric Co2 Capture by Algae: Negative Carbon Dioxide Emission Path. Bioresource technology, 215, 371-379. doi: 10.1016/j.biortech.2016.03.060
  • Oliveira, E. G., Duarte, J. H., Moraes, K., Crexi, V. T. & Pinto, L. A. (2010). Optimisation of Spirulina Platensis Convective Drying: Evaluation of Phycocyanin Loss and Lipid Oxidation. International journal of food science & technology, 45(8), 1572-1578.
  • Oliveira, E. G. d., Rosa, G. S. d., Moraes, M. A. d. & Pinto, L. A. d. A. (2009). Characterization of Thin Layer Drying of Spirulina Platensis Utilizing Perpendicular Air Flow. Bioresource technology, 100(3), 1297-1303.
  • Öz, Y. E. & Kalender, M. (2021). Optimization of Bacterıal Cellulose Productıon from Sugar Beet Molasses by Gluconacetobacter Xylınus Nrrl B-759 in Statıc Culture. Cellulose Chem. Technol., 55(9-10), 1051-1060.
  • Pashaei, H., Ghaemi, A., Nasiri, M. & Karami, B. (2020). Experimental Modeling and Optimization of Co2 Absorption into Piperazine Solutions Using Rsm-Ccd Methodology. ACS omega, 5(15), 8432-8448.
  • Ryu, B., Kang, K.-H., Ngo, D.-H., Qian, Z.-J. & Kim, S.-K. (2012). Statistical Optimization of Microalgae Pavlova Lutheri Cultivation Conditions and Its Fermentation Conditions by Yeast, Candida Rugopelliculosa. Bioresource technology, 107, 307-313.
  • Sabeti, M. B., Hejazi, M. A. & Karimi, A. (2019). Enhanced Removal of Nitrate and Phosphate from Wastewater by Chlorella Vulgaris: Multi-Objective Optimization and Cfd Simulation. Chinese Journal of Chemical Engineering, 27(3), 639-648.
  • Sadeghizadeh, A., Moghaddasi, L. & Rahimi, R. (2017). Co2 Capture from Air by Chlorella Vulgaris Microalgae in an Airlift Photobioreactor. Bioresource technology, 243, 441-447.
  • Sepahvand, S., Jonoobi, M., Ashori, A., Gauvin, F., Brouwers, H., Oksman, K. & Yu, Q. (2020). A Promising Process to Modify Cellulose Nanofibers for Carbon Dioxide (Co2) Adsorption. Carbohydrate polymers, 230, 115571.
  • Web-1. A European Green Deal. (2019-2024). https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en. . Erişim Tarihi: 10.10.2021.
  • Yang, F., Long, L., Sun, X., Wu, H., Li, T. & Xiang, W. (2014). Optimization of Medium Using Response Surface Methodology for Lipid Production by Scenedesmus Sp. Marine drugs, 12(3), 1245-1257.

Optimization of Culture Conditions in Production of Chlorella vulgaris Biomass

Year 2022, Volume: 14 Issue: 2, 581 - 589, 31.07.2022
https://doi.org/10.29137/umagd.1054221

Abstract

In this work, optimization of microalgal biomass production using C. vulgaris was investigated. The optimization experiments were carried out according to the working table formed by Response Surface Method (RSM). Each experiment was conducted in 250 mL flasks with a 12-hour periods in the light (3000 lux)/dark cycle and at 25 °C. The culture volume, the inoculation ratio, and the culture time were selected as the independent variables. The response variable was the algal biomass concentration. The concentration of algal biomass was measured using UV-Visible spectroscopy method. As a result of the optimization studies, it was determined that the best model representing microalgal biomass production is quadratic source. From ANOVA tests for the quadratic model, it was observed that the three independent variables were also important on the model developed. However, it was determined that the inoculation ratio was less effective than other independent variables, and even, the quadratic effect of this parameter was not effective on the model. It was concluded that the most effective independent variable on the model was time. From RSM analyses, it was founded that the binary interaction of the culture volume-the inoculation ratio was effective on the model. The 3D graphs of this binary interaction showed that the algal biomass concentration was high at high inoculation ratio and at low culture volume in the working range. Optimum C. vulgaris biomass production conditions suggested by RSM were determined as 85,693 mL culture volume, 12,152% inoculation ratio, and 16,952 days.

Project Number

-

References

  • Alami, A. H., Alasad, S., Ali, M. & Alshamsi, M. (2021). Investigating Algae for Co2 Capture and Accumulation and Simultaneous Production of Biomass for Biodiesel Production. Science of the Total Environment, 759, 143529.
  • Anjos, M., Fernandes, B. D., Vicente, A. A., Teixeira, J. A. & Dragone, G. (2013). Optimization of Co2 Bio-Mitigation by Chlorella Vulgaris. Bioresource technology, 139, 149-154.
  • Ayatollahi, S. Z., Esmaeilzadeh, F. & Mowla, D. (2021). Integrated Co2 Capture, Nutrients Removal and Biodiesel Production Using Chlorella Vulgaris. Journal of Environmental Chemical Engineering, 9(2), 104763.
  • Aydın, G. Ş. (2019). Mikroalg Teknolojisi Ve Çevresel Kullanımı. Harran Üniversitesi Mühendislik Dergisi, 4(1), 81-92.
  • Azhand, N., Sadeghizadeh, A. & Rahimi, R. (2020). Effect of Superficial Gas Velocity on Co2 Capture from Air by Chlorella Vulgaris Microalgae in an Airlift Photobioreactor with External Sparger. Journal of Environmental Chemical Engineering, 8(4), 104022.
  • Barsanti, L. & Gualtieri, P. (2014). Algae: Anatomy, Biochemistry, and Biotechnology (Second Edi). Crc Press. In).
  • Bohlouli, A., Afshar, M. R., Aboutalebi, M. & Seyedein, S. (2016). Optimization of Tungsten Leaching from Low Manganese Wolframite Concentrate Using Response Surface Methodology (Rsm). International Journal of Refractory Metals and Hard Materials, 61, 107-114.
  • Brennan, L. & Owende, P. (2010). Biofuels from Microalgae—a Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products. Renewable and sustainable energy reviews, 14(2), 557-577.
  • Dissa, A., Desmorieux, H., Savadogo, P., Segda, B. & Koulidiati, J. (2010). Shrinkage, Porosity and Density Behaviour During Convective Drying of Spirulina. Journal of food Engineering, 97(3), 410-418.
  • Gong, X., Wang, Y. & Kuang, T. (2017). Zif-8-Based Membranes for Carbon Dioxide Capture and Separation. ACS Sustainable Chemistry & Engineering, 5(12), 11204-11214.
  • Ho, S.-H., Huang, S.-W., Chen, C.-Y., Hasunuma, T., Kondo, A. & Chang, J.-S. (2013). Characterization and Optimization of Carbohydrate Production from an Indigenous Microalga Chlorella Vulgaris Fsp-E. Bioresource technology, 135, 157-165.
  • Jia, Z., Liu, Y., Daroch, M., Geng, S. & Cheng, J. J. (2014). Screening, Growth Medium Optimisation and Heterotrophic Cultivation of Microalgae for Biodiesel Production. Applied biochemistry and biotechnology, 173(7), 1667-1679.
  • Kativu, E. (2011). Carbon Dioxide Absorption Using Fresh Water Algae and Identifying Potential Uses of Algal Biomass. Faculty of Engineering and the Built Enviroment, University of the Witwatersrand, Johannesburg.
  • Kazeem, M., Hossain, S., Hossain, M. & Razzak, S. (2018). Application of Central Composite Design to Optimize Culture Conditions of Chlorella Vulgaris in a Batch Photobioreactor: An Efficient Modeling Approach. Chemical Product and Process Modeling, 13(4).
  • Kong, W.-B., Hua, S.-F., Cao, H., Mu, Y.-W., Yang, H., Song, H. & Xia, C.-G. (2012). Optimization of Mixotrophic Medium Components for Biomass Production and Biochemical Composition Biosynthesis by Chlorella Vulgaris Using Response Surface Methodology. Journal of the Taiwan Institute of Chemical Engineers, 43(3), 360-367.
  • Kupgan, G., Abbott, L. J., Hart, K. E. & Colina, C. M. (2018). Modeling Amorphous Microporous Polymers for Co2 Capture and Separations. Chemical reviews, 118(11), 5488-5538. doi: 10.1021/acs.chemrev.7b00691
  • Moreira, D. & Pires, J. C. (2016). Atmospheric Co2 Capture by Algae: Negative Carbon Dioxide Emission Path. Bioresource technology, 215, 371-379. doi: 10.1016/j.biortech.2016.03.060
  • Oliveira, E. G., Duarte, J. H., Moraes, K., Crexi, V. T. & Pinto, L. A. (2010). Optimisation of Spirulina Platensis Convective Drying: Evaluation of Phycocyanin Loss and Lipid Oxidation. International journal of food science & technology, 45(8), 1572-1578.
  • Oliveira, E. G. d., Rosa, G. S. d., Moraes, M. A. d. & Pinto, L. A. d. A. (2009). Characterization of Thin Layer Drying of Spirulina Platensis Utilizing Perpendicular Air Flow. Bioresource technology, 100(3), 1297-1303.
  • Öz, Y. E. & Kalender, M. (2021). Optimization of Bacterıal Cellulose Productıon from Sugar Beet Molasses by Gluconacetobacter Xylınus Nrrl B-759 in Statıc Culture. Cellulose Chem. Technol., 55(9-10), 1051-1060.
  • Pashaei, H., Ghaemi, A., Nasiri, M. & Karami, B. (2020). Experimental Modeling and Optimization of Co2 Absorption into Piperazine Solutions Using Rsm-Ccd Methodology. ACS omega, 5(15), 8432-8448.
  • Ryu, B., Kang, K.-H., Ngo, D.-H., Qian, Z.-J. & Kim, S.-K. (2012). Statistical Optimization of Microalgae Pavlova Lutheri Cultivation Conditions and Its Fermentation Conditions by Yeast, Candida Rugopelliculosa. Bioresource technology, 107, 307-313.
  • Sabeti, M. B., Hejazi, M. A. & Karimi, A. (2019). Enhanced Removal of Nitrate and Phosphate from Wastewater by Chlorella Vulgaris: Multi-Objective Optimization and Cfd Simulation. Chinese Journal of Chemical Engineering, 27(3), 639-648.
  • Sadeghizadeh, A., Moghaddasi, L. & Rahimi, R. (2017). Co2 Capture from Air by Chlorella Vulgaris Microalgae in an Airlift Photobioreactor. Bioresource technology, 243, 441-447.
  • Sepahvand, S., Jonoobi, M., Ashori, A., Gauvin, F., Brouwers, H., Oksman, K. & Yu, Q. (2020). A Promising Process to Modify Cellulose Nanofibers for Carbon Dioxide (Co2) Adsorption. Carbohydrate polymers, 230, 115571.
  • Web-1. A European Green Deal. (2019-2024). https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en. . Erişim Tarihi: 10.10.2021.
  • Yang, F., Long, L., Sun, X., Wu, H., Li, T. & Xiang, W. (2014). Optimization of Medium Using Response Surface Methodology for Lipid Production by Scenedesmus Sp. Marine drugs, 12(3), 1245-1257.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mehmet Kalender 0000-0002-8932-8840

Sümeyye Bürkev 0000-0003-2741-3764

Project Number -
Publication Date July 31, 2022
Submission Date January 7, 2022
Published in Issue Year 2022 Volume: 14 Issue: 2

Cite

APA Kalender, M., & Bürkev, S. (2022). Chlorella vulgaris Biyokütle Üretiminde Kültür Şartlarının Optimizasyonu. International Journal of Engineering Research and Development, 14(2), 581-589. https://doi.org/10.29137/umagd.1054221

All Rights Reserved. Kırıkkale University, Faculty of Engineering.