Research Article
BibTex RIS Cite

rGO/SnSbS Nanokompozitlerin Farklı Depolama Sıcaklığına Bağlı Elektriksel, Yapısal ve Yüzeysel Değerlendirmesi

Year 2022, Volume: 14 Issue: 2, 907 - 916, 31.07.2022
https://doi.org/10.29137/umagd.1062439

Abstract

Bu çalışmada indirgenmiş grafen oksit/sülfosalt (rGO/SnSbS) nanokompozit yapıları ticari cam taban malzemeler üzerine kimyasal banyo depolama (CBD) metodu ile 20 °C, 40 °C, 60 °C ve 80 °C sıcaklıklarda üretilmiştir. Yapısal olarak düşük sıcaklık değerlerinde amorf yapıya sahiptir ancak 80 °C sıcaklıkta Sn2Sb2S5 kristallenmeleri gözlenmiştir. Artan depolama sıcaklığına bağlı 125,22 nm, 126,27nm, 132,95 nm ve 157,16 nm kalınlıklı nanokompozit yapıların daha homojen ve yoğun yapışkan kıvama geldiği görülmüştür. Elektriksel dirençleri ise four-point probe metodu ile film kalınlığına bağlı olarak I-V ölçümlerinden hesaplanmıştır ve sıcaklığın artması ile elektriksel dirençlerin düştüğü görülmüştür. Elde edilen verilere göre sıcaklığın etkisi ve kullanım alanları tartışılmıştır.

Supporting Institution

Karabük Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

KBÜBAP-21-DS-012

Thanks

Bu çalışma Karabük Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından KBÜBAP-21-DS-012 nolu proje ile desteklenmiştir. Finansal desteklerinden dolayı KBU-BAP birimine teşekkür ederiz.

References

  • Abdelkader, D., ben Rabeh, M., Khemiri, N., & Kanzari, M. (2014). Investigation on optical properties of SnxSbyS z sulfosalts thin films. Materials Science in Semiconductor Processing, 21(1), 14–19. doi.org/10.1016/j.mssp.2014.01.027
  • Abdelkader, D., Chaffar Akkari, F., Khemiri, N., Gallas, B., Antoni, F., & Kanzari, M. (2015). Structural and spectroscopic ellipsometry studies on vacuum-evaporated Sn2m-4Sb4S2m+2 (m = 2.5, 3 and 4) thin films deposited on glass and Si substrates. Journal of Alloys and Compounds, 646, 1049–1057. doi.org/10.1016/j.jallcom.2015.06.114
  • Akram, M., Saleh, A. T., Ibrahim, W. A. W., Awan, A. S., & Hussain, R. (2016). Continuous microwave flow synthesis (CMFS) of nano-sized tin oxide: Effect of precursor concentration. Ceramics International, 42(7), 8613–8619. doi.org/10.1016/j.ceramint.2016.02.092
  • Antitomaso, P., Fraisse, B., Sougrati, M. T., Morato-Lallemand, F., Biscaglia, S., Aymé-Perrot, D., Girard, P., & Monconduit, L. (2016). Ultra-fast dry microwave preparation of SnSb used as negative electrode material for Li-ion batteries. Journal of Power Sources, 325, 346–350. doi.org/10.1016/j.jpowsour.2016.06.010
  • Chen, J., & Cheng, F. (2009). Combination of lightweight elements and nanostructured materials for batteries. Accounts of Chemical Research, 42(6), 713–723. doi.org/10.1021/ar800229g
  • Dittrich, H., Stadler, A., Topa, D., Schimper, H. J., & Basch, A. (2009). Progress in sulfosalt research. Physica Status Solidi (A) Applications and Materials Science, 206(5), 1034–1041. doi.org/10.1002/pssa.200881242
  • Dong, X., Liu, W., Chen, X., Yan, J., Li, N., Shi, S., Zhang, S., & Yang, X. (2018). Novel three dimensional hierarchical porous Sn-Ni alloys as anode for lithium ion batteries with long cycle life by pulse electrodeposition. Chemical Engineering Journal, 350, 791–798. doi.org/10.1016/j.cej.2018.06.031
  • Duan, J., Yu, J., Feng, S., & Su, L. (2016). A rapid microwave synthesis of nitrogen-sulfur co-doped carbon nanodots as highly sensitive and selective fluorescence probes for ascorbic acid. Talanta, 153, 332–339. doi.org/10.1016/j.talanta.2016.03.035
  • Fan, W., Liu, X., Wang, Z., Fei, P., Zhang, R., Wang, Y., Qin, C., Zhao, W., & Ding, Y. (2018). Synergetic enhancement of the electronic/ionic conductivity of a Li-ion battery by fabrication of a carbon-coated nanoporous SnO: XSb alloy anode. Nanoscale, 10(16), 7605–7611. doi.org/10.1039/c8nr00550h
  • Gassoumi, A., & Kanzari, M. (2011). Growth and post-annealing effect on the properties of the new sulfosalt SnSb2S4 thin films. Physica E: Low-Dimensional Systems and Nanostructures, 44(1), 71–74. doi.org/10.1016/j.physe.2011.07.007
  • Gutwirth, J., Wágner, T., Němec, P., Kasap, S. O., & Frumar, M. (2008). Thermal and optical properties of AgSbS2 thin films prepared by pulsed laser deposition (PLD). Journal of Non-Crystalline Solids, 354(2–9), 497–502. doi.org/10.1016/j.jnoncrysol.2007.08.083
  • He, M., Kravchyk, K., Walter, M., & Kovalenko, M. v. (2014). Monodisperse antimony nanocrystals for high-rate li-ion and na-ion battery anodes: Nano versus bulk. Nano Letters, 14(3), 1255–1262. doi.org/10.1021/nl404165c
  • He, M., Walter, M., Kravchyk, K. v., Erni, R., Widmer, R., & Kovalenko, M. v. (2015). Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: Synergy and dissonance between Sn and Sb. Nanoscale, 7(2), 455–459. doi.org/10.1039/c4nr05604c
  • https://www.chemguide.co.uk/analysis/ir/interpret.html. (2019).
  • Huang, Z., Chen, Z., Ding, S., Chen, C., & Zhang, M. (2018). Multi-protection from nanochannels and graphene of SnSb-graphene carbon composites ensuring high properties for potassium-ion batteries. Solid State Ionics, 324, 267–275. doi.org/10.1016/j.ssi.2018.07.019
  • Ismail, B., Mushtaq, S., Khan, R. A., Khan, A. M., Zeb, A., & Khan, A. R. (2014). Enhanced grain growth and improved optical properties of the Sn doped thin films of Sb2S3 orthorhombic phase. Optik, 125(21), 6418–6421. doi.org/10.1016/j.ijleo.2014.06.138
  • Jena, S., Mitra, A., Patra, A., Sengupta, S., Das, K., Majumder, S. B., & Das, S. (2018). Sandwich architecture of Sn–SnSb alloy nanoparticles and N-doped reduced graphene oxide sheets as a high rate capability anode for lithium-ion batteries. Journal of Power Sources, 401, 165–174. doi.org/10.1016/j.jpowsour.2018.08.058
  • Khel, L. K., Khan, S., & Zaman, M. I. ,. (2005). SnS thin films fabricated by normal electrochemical deposition on aluminium plate. J. Chem. Soc. Pak., 27(1), 24–28. Lakshmi, D., Nalini, B., Sivaraj, P., & Jayapandi, S. (2017). Electro analytical studies on indium incorporated SnSb alloy anode for Li-ion batteries. Journal of Electroanalytical Chemistry, 801, 459–465. doi.org/10.1016/j.jelechem.2017.08.010
  • Li, Y., Huang, L., Zhang, P., Ren, X., & Deng, L. (2015). Synthesis of Si-Sb-ZnO Composites as High-Performance Anodes for Lithium-ion Batteries. Nanoscale Research Letters, 10(1). doi.org/10.1186/s11671-015-1128-4
  • M. Armand, & J.-M. Tarascon. (2008). Building Better Batteries. Nature , 451, 652–657.
  • Manolache, S., Duta, A., Isac, L., Nanu, M., Goossens, A., & Schoonman, J. (2007). The influence of the precursor concentration on CuSbS2 thin films deposited from aqueous solutions. Thin Solid Films, 515(15 SPEC. ISS.), 5957–5960. doi.org/10.1016/j.tsf.2006.12.046
  • Mariappan, R., Mahalingam, T., & Ponnuswamy, V. (2011). Preparation and characterization of electrodeposited SnS thin films. Optik, 122(24), 2216–2219. doi.org/10.1016/j.ijleo.2011.01.015
  • Mellouki, I., Mami, A., Bennaji, N., & Fadhli, Y. (2018). Study of doping and annealing effects on thermal properties of SnxSb2Sy (1≤ x≤ 3, 4≤ y≤ 6) sulfosalts thin films by electro-pyroelectric technique. Thermochimica Acta, 670, 123–127. doi.org/10.1016/j.tca.2018.10.021
  • Nasrollahzadeh, M., Jaleh, B., & Jabbari, A. (2014). Synthesis, characterization and catalytic activity of graphene oxide/ZnO nanocomposites. RSC Advances, 4(69), 36713–36720. doi.org/10.1039/c4ra05833j
  • Nithyadharseni, P., Reddy, M. v., Nalini, B., & Chowdari, B. V. R. (2015). Electrochemical investigation of SnSb nano particles for lithium-ion batteries. Materials Letters, 150, 24–27. doi.org/10.1016/j.matlet.2015.02.124
  • Sudesh, Kumar, N., Das, S., Bernhard, C., & Varma, G. D. (2013). Effect of graphene oxide doping on superconducting properties of bulk MgB2. Superconductor Science and Technology, 26(9). doi.org/10.1088/0953-2048/26/9/095008
  • Tesfaye, A. T., Yücel, Y. D., Barr, M. K. S., Santinacci, L., Vacandio, F., Dumur, F., Maria, S., Monconduit, L., & Djenizian, T. (2017). The Electrochemical Behavior of SnSb as an Anode for Li-ion Batteries Studied by Electrochemical Impedance Spectroscopy and Electron Microscopy. Electrochimica Acta, 256, 155–161. doi.org/10.1016/j.electacta.2017.10.031
  • Tezel, N. S., Tezel, F. M., & Kariper, I. A. (2019a). Surface and electro-optical properties of amorphous Sb 2 S 3 thin films. Applied Physics A: Materials Science and Processing, 125(3). doi.org/10.1007/s00339-019-2475-2
  • Tezel, N. S., Tezel, F. M., & Kariper, I. A. (2019b). The impact of pH on the structural, surface, electrical and optical properties of nanostructured PbSe thin films. Materials Research Express, 6(7). doi.org/10.1088/2053-1591/ab1675
  • Wagner, T., Krbal, M., Nemec, P., Frumar, M., Wagner, T., Vlcek, M., Perina, V., Mackova, A., Hnatovitz, V., & Kasap, S. O. (2004). AgAsS2 amorphous chalcogenide films prepared by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 79(4–6), 1563–1565. doi.org/10.1007/s00339-004-2848-y
  • Wang, H., Wu, Q., Cao, D., Lu, X., Wang, J., Leung, M. K. H., Cheng, S., Lu, L., & Niu, C. (2016). Synthesis of SnSb-embedded carbon-silica fibers via electrospinning: Effect of TEOS on structural evolutions and electrochemical properties. Materials Today Energy, 1–2, 24–32. doi.org/10.1016/j.mtener.2016.11.003
  • Wu, H., Yu, G., Pan, L., Liu, N., McDowell, M. T., Bao, Z., & Cui, Y. (2013). Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nature Communications, 4. doi.org/10.1038/ncomms2941
  • Xia, X., Li, Z., Xue, L., Qiu, Y., Zhang, C., & Zhang, X. (2017). The electrochemical performance of SnSb/C nanofibers with different morphologies and underlying mechanism. Journal of Materials Research, 32(6), 1184–1193. doi.org/10.1557/jmr.2016.508
  • Xia, X., Li, Z., Zhou, H., Qiu, Y., & Zhang, C. (2016). The effect of deep cryogenic treatment on SnSb/C nanofibers anodes for Li-ion battery. Electrochimica Acta, 222, 765–772. doi.org/10.1016/j.electacta.2016.11.034
  • Yi, Z., Han, Q., Geng, D., Wu, Y., Cheng, Y., & Wang, L. (2017). One-pot chemical route for morphology-controllable fabrication of Sn-Sb micro/nano-structures: Advanced anode materials for lithium and sodium storage. Journal of Power Sources, 342, 861–871. doi.org/10.1016/j.jpowsour.2017.01.016
  • Zhang, G., Zhu, J., Zeng, W., Hou, S., Gong, F., Li, F., Li, C. C., & Duan, H. (2014). Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries. Nano Energy, 9, 61–70. doi.org/10.1016/j.nanoen.2014.06.030
  • Zhang, L., Lu, L., Zhang, D., Hu, W., Wang, N., Li, Y., & Zeng, H. (2016). Dual-buffered SnSe@CNFs as negative electrode with outstanding lithium storage performance. http://www.elsevier.com/open-access/userlicense/1.0/
  • Zou, Y., & Wang, Y. (2011). Sn@CNT nanostructures rooted in graphene with high and fast Li-storage capacities. ACS Nano, 5(10), 8108–8114. doi.org/10.1021/nn2027159

Electrical, Structural, Surface Evaluation Depends on the Different Deposition Temperature of rGO/SnSbS Nanocomposite

Year 2022, Volume: 14 Issue: 2, 907 - 916, 31.07.2022
https://doi.org/10.29137/umagd.1062439

Abstract

In this study, reduced graphene oxide/sulfosalt (rGO/SnSbS) nanocomposite structures were produced at temperatures of 20 °C, 40 °C, 60 °C and 80°C with chemical bath deposition (CBD) method on commercial glass substrates. Structurally, it has an amorphous structure at low temperature values, but crystallizations of Sn2Sb2S5 have been observed at the temperature of 80 °C. It has been observed that nanocomposite structures with thickness of 125.22 nm, 126.27nm, 132.95 nm and 157.16 nm due to increased deposition temperatures have a more homogeneous and dense adhesive consistency. Their electrical resistance was calculated from I-V measurements depending on the film thickness using the four-point probe method, and it was observed that the electrical resistance decreased with increasing temperature. According to the obtained results, the effect of temperature and their usage applications have been discussed.

Project Number

KBÜBAP-21-DS-012

References

  • Abdelkader, D., ben Rabeh, M., Khemiri, N., & Kanzari, M. (2014). Investigation on optical properties of SnxSbyS z sulfosalts thin films. Materials Science in Semiconductor Processing, 21(1), 14–19. doi.org/10.1016/j.mssp.2014.01.027
  • Abdelkader, D., Chaffar Akkari, F., Khemiri, N., Gallas, B., Antoni, F., & Kanzari, M. (2015). Structural and spectroscopic ellipsometry studies on vacuum-evaporated Sn2m-4Sb4S2m+2 (m = 2.5, 3 and 4) thin films deposited on glass and Si substrates. Journal of Alloys and Compounds, 646, 1049–1057. doi.org/10.1016/j.jallcom.2015.06.114
  • Akram, M., Saleh, A. T., Ibrahim, W. A. W., Awan, A. S., & Hussain, R. (2016). Continuous microwave flow synthesis (CMFS) of nano-sized tin oxide: Effect of precursor concentration. Ceramics International, 42(7), 8613–8619. doi.org/10.1016/j.ceramint.2016.02.092
  • Antitomaso, P., Fraisse, B., Sougrati, M. T., Morato-Lallemand, F., Biscaglia, S., Aymé-Perrot, D., Girard, P., & Monconduit, L. (2016). Ultra-fast dry microwave preparation of SnSb used as negative electrode material for Li-ion batteries. Journal of Power Sources, 325, 346–350. doi.org/10.1016/j.jpowsour.2016.06.010
  • Chen, J., & Cheng, F. (2009). Combination of lightweight elements and nanostructured materials for batteries. Accounts of Chemical Research, 42(6), 713–723. doi.org/10.1021/ar800229g
  • Dittrich, H., Stadler, A., Topa, D., Schimper, H. J., & Basch, A. (2009). Progress in sulfosalt research. Physica Status Solidi (A) Applications and Materials Science, 206(5), 1034–1041. doi.org/10.1002/pssa.200881242
  • Dong, X., Liu, W., Chen, X., Yan, J., Li, N., Shi, S., Zhang, S., & Yang, X. (2018). Novel three dimensional hierarchical porous Sn-Ni alloys as anode for lithium ion batteries with long cycle life by pulse electrodeposition. Chemical Engineering Journal, 350, 791–798. doi.org/10.1016/j.cej.2018.06.031
  • Duan, J., Yu, J., Feng, S., & Su, L. (2016). A rapid microwave synthesis of nitrogen-sulfur co-doped carbon nanodots as highly sensitive and selective fluorescence probes for ascorbic acid. Talanta, 153, 332–339. doi.org/10.1016/j.talanta.2016.03.035
  • Fan, W., Liu, X., Wang, Z., Fei, P., Zhang, R., Wang, Y., Qin, C., Zhao, W., & Ding, Y. (2018). Synergetic enhancement of the electronic/ionic conductivity of a Li-ion battery by fabrication of a carbon-coated nanoporous SnO: XSb alloy anode. Nanoscale, 10(16), 7605–7611. doi.org/10.1039/c8nr00550h
  • Gassoumi, A., & Kanzari, M. (2011). Growth and post-annealing effect on the properties of the new sulfosalt SnSb2S4 thin films. Physica E: Low-Dimensional Systems and Nanostructures, 44(1), 71–74. doi.org/10.1016/j.physe.2011.07.007
  • Gutwirth, J., Wágner, T., Němec, P., Kasap, S. O., & Frumar, M. (2008). Thermal and optical properties of AgSbS2 thin films prepared by pulsed laser deposition (PLD). Journal of Non-Crystalline Solids, 354(2–9), 497–502. doi.org/10.1016/j.jnoncrysol.2007.08.083
  • He, M., Kravchyk, K., Walter, M., & Kovalenko, M. v. (2014). Monodisperse antimony nanocrystals for high-rate li-ion and na-ion battery anodes: Nano versus bulk. Nano Letters, 14(3), 1255–1262. doi.org/10.1021/nl404165c
  • He, M., Walter, M., Kravchyk, K. v., Erni, R., Widmer, R., & Kovalenko, M. v. (2015). Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: Synergy and dissonance between Sn and Sb. Nanoscale, 7(2), 455–459. doi.org/10.1039/c4nr05604c
  • https://www.chemguide.co.uk/analysis/ir/interpret.html. (2019).
  • Huang, Z., Chen, Z., Ding, S., Chen, C., & Zhang, M. (2018). Multi-protection from nanochannels and graphene of SnSb-graphene carbon composites ensuring high properties for potassium-ion batteries. Solid State Ionics, 324, 267–275. doi.org/10.1016/j.ssi.2018.07.019
  • Ismail, B., Mushtaq, S., Khan, R. A., Khan, A. M., Zeb, A., & Khan, A. R. (2014). Enhanced grain growth and improved optical properties of the Sn doped thin films of Sb2S3 orthorhombic phase. Optik, 125(21), 6418–6421. doi.org/10.1016/j.ijleo.2014.06.138
  • Jena, S., Mitra, A., Patra, A., Sengupta, S., Das, K., Majumder, S. B., & Das, S. (2018). Sandwich architecture of Sn–SnSb alloy nanoparticles and N-doped reduced graphene oxide sheets as a high rate capability anode for lithium-ion batteries. Journal of Power Sources, 401, 165–174. doi.org/10.1016/j.jpowsour.2018.08.058
  • Khel, L. K., Khan, S., & Zaman, M. I. ,. (2005). SnS thin films fabricated by normal electrochemical deposition on aluminium plate. J. Chem. Soc. Pak., 27(1), 24–28. Lakshmi, D., Nalini, B., Sivaraj, P., & Jayapandi, S. (2017). Electro analytical studies on indium incorporated SnSb alloy anode for Li-ion batteries. Journal of Electroanalytical Chemistry, 801, 459–465. doi.org/10.1016/j.jelechem.2017.08.010
  • Li, Y., Huang, L., Zhang, P., Ren, X., & Deng, L. (2015). Synthesis of Si-Sb-ZnO Composites as High-Performance Anodes for Lithium-ion Batteries. Nanoscale Research Letters, 10(1). doi.org/10.1186/s11671-015-1128-4
  • M. Armand, & J.-M. Tarascon. (2008). Building Better Batteries. Nature , 451, 652–657.
  • Manolache, S., Duta, A., Isac, L., Nanu, M., Goossens, A., & Schoonman, J. (2007). The influence of the precursor concentration on CuSbS2 thin films deposited from aqueous solutions. Thin Solid Films, 515(15 SPEC. ISS.), 5957–5960. doi.org/10.1016/j.tsf.2006.12.046
  • Mariappan, R., Mahalingam, T., & Ponnuswamy, V. (2011). Preparation and characterization of electrodeposited SnS thin films. Optik, 122(24), 2216–2219. doi.org/10.1016/j.ijleo.2011.01.015
  • Mellouki, I., Mami, A., Bennaji, N., & Fadhli, Y. (2018). Study of doping and annealing effects on thermal properties of SnxSb2Sy (1≤ x≤ 3, 4≤ y≤ 6) sulfosalts thin films by electro-pyroelectric technique. Thermochimica Acta, 670, 123–127. doi.org/10.1016/j.tca.2018.10.021
  • Nasrollahzadeh, M., Jaleh, B., & Jabbari, A. (2014). Synthesis, characterization and catalytic activity of graphene oxide/ZnO nanocomposites. RSC Advances, 4(69), 36713–36720. doi.org/10.1039/c4ra05833j
  • Nithyadharseni, P., Reddy, M. v., Nalini, B., & Chowdari, B. V. R. (2015). Electrochemical investigation of SnSb nano particles for lithium-ion batteries. Materials Letters, 150, 24–27. doi.org/10.1016/j.matlet.2015.02.124
  • Sudesh, Kumar, N., Das, S., Bernhard, C., & Varma, G. D. (2013). Effect of graphene oxide doping on superconducting properties of bulk MgB2. Superconductor Science and Technology, 26(9). doi.org/10.1088/0953-2048/26/9/095008
  • Tesfaye, A. T., Yücel, Y. D., Barr, M. K. S., Santinacci, L., Vacandio, F., Dumur, F., Maria, S., Monconduit, L., & Djenizian, T. (2017). The Electrochemical Behavior of SnSb as an Anode for Li-ion Batteries Studied by Electrochemical Impedance Spectroscopy and Electron Microscopy. Electrochimica Acta, 256, 155–161. doi.org/10.1016/j.electacta.2017.10.031
  • Tezel, N. S., Tezel, F. M., & Kariper, I. A. (2019a). Surface and electro-optical properties of amorphous Sb 2 S 3 thin films. Applied Physics A: Materials Science and Processing, 125(3). doi.org/10.1007/s00339-019-2475-2
  • Tezel, N. S., Tezel, F. M., & Kariper, I. A. (2019b). The impact of pH on the structural, surface, electrical and optical properties of nanostructured PbSe thin films. Materials Research Express, 6(7). doi.org/10.1088/2053-1591/ab1675
  • Wagner, T., Krbal, M., Nemec, P., Frumar, M., Wagner, T., Vlcek, M., Perina, V., Mackova, A., Hnatovitz, V., & Kasap, S. O. (2004). AgAsS2 amorphous chalcogenide films prepared by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 79(4–6), 1563–1565. doi.org/10.1007/s00339-004-2848-y
  • Wang, H., Wu, Q., Cao, D., Lu, X., Wang, J., Leung, M. K. H., Cheng, S., Lu, L., & Niu, C. (2016). Synthesis of SnSb-embedded carbon-silica fibers via electrospinning: Effect of TEOS on structural evolutions and electrochemical properties. Materials Today Energy, 1–2, 24–32. doi.org/10.1016/j.mtener.2016.11.003
  • Wu, H., Yu, G., Pan, L., Liu, N., McDowell, M. T., Bao, Z., & Cui, Y. (2013). Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nature Communications, 4. doi.org/10.1038/ncomms2941
  • Xia, X., Li, Z., Xue, L., Qiu, Y., Zhang, C., & Zhang, X. (2017). The electrochemical performance of SnSb/C nanofibers with different morphologies and underlying mechanism. Journal of Materials Research, 32(6), 1184–1193. doi.org/10.1557/jmr.2016.508
  • Xia, X., Li, Z., Zhou, H., Qiu, Y., & Zhang, C. (2016). The effect of deep cryogenic treatment on SnSb/C nanofibers anodes for Li-ion battery. Electrochimica Acta, 222, 765–772. doi.org/10.1016/j.electacta.2016.11.034
  • Yi, Z., Han, Q., Geng, D., Wu, Y., Cheng, Y., & Wang, L. (2017). One-pot chemical route for morphology-controllable fabrication of Sn-Sb micro/nano-structures: Advanced anode materials for lithium and sodium storage. Journal of Power Sources, 342, 861–871. doi.org/10.1016/j.jpowsour.2017.01.016
  • Zhang, G., Zhu, J., Zeng, W., Hou, S., Gong, F., Li, F., Li, C. C., & Duan, H. (2014). Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries. Nano Energy, 9, 61–70. doi.org/10.1016/j.nanoen.2014.06.030
  • Zhang, L., Lu, L., Zhang, D., Hu, W., Wang, N., Li, Y., & Zeng, H. (2016). Dual-buffered SnSe@CNFs as negative electrode with outstanding lithium storage performance. http://www.elsevier.com/open-access/userlicense/1.0/
  • Zou, Y., & Wang, Y. (2011). Sn@CNT nanostructures rooted in graphene with high and fast Li-storage capacities. ACS Nano, 5(10), 8108–8114. doi.org/10.1021/nn2027159
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Articles
Authors

Necmi Serkan Tezel 0000-0002-9452-677X

Afşin Kariper 0000-0001-9127-301X

Project Number KBÜBAP-21-DS-012
Publication Date July 31, 2022
Submission Date January 24, 2022
Published in Issue Year 2022 Volume: 14 Issue: 2

Cite

APA Tezel, N. S., & Kariper, A. (2022). rGO/SnSbS Nanokompozitlerin Farklı Depolama Sıcaklığına Bağlı Elektriksel, Yapısal ve Yüzeysel Değerlendirmesi. International Journal of Engineering Research and Development, 14(2), 907-916. https://doi.org/10.29137/umagd.1062439

All Rights Reserved. Kırıkkale University, Faculty of Engineering.