Classification of network traffic not only contributes to improving the quality of network services of institutions, but also helps to protect important data. Machine learning algorithms are frequently used in the classification of network traffic, since port-based and load-based classification processes are insufficient in encrypted networks. In this study, VPN and Tor network traffic combined in the darknet category was classified with the Gradient Boosting Algorithm. 70% of the dataset is reserved for training and 30% for testing. 10 fold cross validation was applied in the training set. Network flows in 8 different categories: Audio-Streaming, Browsing, Chat, E-mail, P2P, File Transfer, Video-Streaming and VOIP were classified with 99.8% accuracy. The proposed method automated the process of network analysis from the darknet. It enabled organizations to protect their important data with high accuracy in a short time.
Ağ trafiğinin sınıflandırılması kurumların ağ hizmetlerinin kalitesinin artırılmasına katkı sağlamasının yanında önemli verilerinin korunmasına da yardımcı olmaktadır. Ağ trafiğinin sınıflandırmada, port tabanlı ve yük tabanlı sınıflandırma işlemlerinin şifreli ağlarda yetersiz kalması nedeniyle makine öğrenmesi algoritmaları sıklıkla kullanılmaktadır. Bu çalışmada, Darknet kategorisinde birleştirilen VPN ve Tor ağ trafiği Gradyan Artırma Algoritması ile sınıflandırılmıştır. Veri setinin %70’i eğitim, %30’u test için ayrılmıştır. Eğitim setinde 10 kat çapraz doğrulama uygulanmıştır. 8 farklı kategoride ağ akışları: Ses Akışı, Tarama, Sohbet, E-posta, P2P, Dosya Aktarımı, Video Akışı ve VOIP %99,8 doğrulukla sınıflandırıldı. Önerilen yöntem, karanlık ağdan ağ analizi sürecini otomatikleştirmiştir. Kuruluşların önemli verilerini kısa sürede yüksek doğrulukla korumasını sağlamaktadır.
Primary Language | English |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | July 31, 2022 |
Submission Date | May 16, 2022 |
Published in Issue | Year 2022 Volume: 14 Issue: 2 |
All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.