Research Article
BibTex RIS Cite

Experimental Investigation of the Effect of Hydrophobic Coating on Aerodynamic Parameters of Airfoils

Year 2023, Volume: 15 Issue: 1, 186 - 194, 31.01.2023
https://doi.org/10.29137/umagd.1191778

Abstract

In this study, an experimental study was carried out on NACA 4418 wing profile. The airfoil was covered with two different materials by spray coating method, the degrees of wetting (water droplet contact angle with the surface, θ) were determined. The three different surfaces that are as normal (θ = 59o <90o: hydrophilic), hydrophobic (θ = 93o> 90o) and superhydrophobic (θ = 154o> 150o) were obtained. For these three different situations, the lift and drag coefficients were determined experimentally in the wind tunnel at a free flow velocity of 15 m / s (Re = 253.196) and 6 different angle of attack (-10 °, -5 °, 0 °, 5 °, 10 °, 15 °) and compared with each other. The results showed that when the hydrophobic and superhydrophobic properties to the normal (hydrophilic) airfoil were introduced, the lift coefficients of airfoil increased by an average of 15% and 23%, respectively for all the studied attack angles. In addition, adding hydrophobic and super hydrophobic properties to the normal (hydrophilic) airfoil decreased the drag coefficients of the airfoil by 12% and 20%, respectively for all the studied attack angles.

References

  • Anonim 1, Airfoil Tools NACA 4418. (2020). http://airfoiltools.com/polar/details?polar=xf-naca4418-il-200000, Erişim tarihi 10.04.2020
  • Anonim 2, Bijl, H., and Timmer, N. (2020). Introduction to Aerospace Engineering Aerodynamics 9 &10, Erişim tarihi 10.04.2020
  • Campbell, B. A., and Bezos, G. M. (1989). Steady -State and Transitional Aerodynamic Characteristics of a Wing in Simulated Heavy Rain. NASA Technical Paper, 2932.
  • Cao, L., Jones, A. K., Sikka, V. K., Wu, J., and Gao, D. (2009). Anti-Icing superhydrophobic coatings. Langmuir, 25(21), 12444–12448. https://doi.org/10.1021/la902882b
  • De Pauw, D., and Dolatabadi, A. (2017). Effect of superhydrophobic coating on the anti-icing and deicing of an airfoil. Journal of Aircraft, 54(2), 490–499. https://doi.org/10.2514/1.C033828
  • Genç, S., Özışık, G., and Kahraman, N. (2008). Düz Flapli Naca0012 Kanat Profilinin Aerodinamik Performansinin Incelenmesi. Isı Bilimi ve Tekniği Dergisi, 28(1), 1–8.
  • Güzelbey, İ. H., Eraslan, Y., and Doğru, M. H. (2018). Performansı Açısından XFLR5 Kullanılarak Nümerik Olarak İncelenmesi. The Black Sea Journal of Sciences, 8(1), 48–65. https://doi.org/10.31466/kfbd.542566
  • Jung, S., Dorrestijn, M., Raps, D., Das, A., Megaridis, C. M., and Poulikakos, D. (2011). Are superhydrophobic surfaces best for icephobicity? Langmuir, 27(6), 3059–3066. https://doi.org/10.1021/la104762g
  • Kline, S. J. and F. A. McClintock. (1953). "Describing Uncertainties in Single-Sample Experiments," Mechanical Engineering, 3-8
  • Krishnan, K. G., Milionis, A., Loth, E., Farrell, T. E., Crouch, J. D., and Berry, D. H. (2017). Influence of hydrophobic and superhydrophobic surfaces on reducing aerodynamic insect residues. Applied Surface Science, 392, 723–731. https://doi.org/10.1016/j.apsusc.2016.09.096
  • Liu, Z., Gou, Y., Wang, J., and Cheng, S. (2008). Frost formation on a super-hydrophobic surface under natural convection conditions. International Journal of Heat and Mass Transfer, 51(25–26), 5975–5982. https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.026
  • Mahmoodi, M., Nosratollahi, M., and Chini, S. F. (2017). The potential of using superhydrophobic surfaces on airfoils and hydrofoils: a numerical approach. International Journal of Computational Materials Science and Surface Engineering, 7(1), 44. https://doi.org/10.1504/ijcmsse.2017.088726
  • Okulova, N., Taboryski, R., Sørensen, J. N., Shtork, S. I., and Okulov, V. L. (2018). Aerodynamic effect of icing/rain impacts on super-hydrophobic surfaces. AIP Conference Proceedings, 2027(November). https://doi.org/10.1063/1.5065139
  • Rhode, R. V. (1941). Some effects of rainfall on flith of airplanes and on instrument indications. NACA TN, 803. https://ntrs.nasa.gov/search.jsp?R=19930080785 2020-06-14T10:52:32+00:00Z
  • Wu, Z., and Cao, Y. (2015). Numerical simulation of flow over an airfoil in heavy rain via a two-way coupled Eulerian-Lagrangian approach. International Journal of Multiphase Flow, 69, 81–92. https://doi.org/10.1016/j.ijmultiphaseflow.2014.11.006

Hidrofobik Kaplamanın Kanat Profillerinin Aerodinamik Parametrelerine Etkisinin Deneysel İncelenmesi

Year 2023, Volume: 15 Issue: 1, 186 - 194, 31.01.2023
https://doi.org/10.29137/umagd.1191778

Abstract

Bu çalışmada NACA 4418 kanat profile üzerinde deneysel bir çalışma yürütülmüştür. Kanat profili spray kaplama yöntemi ile iki farklı malzeme ile kaplanmış, ıslanırlık derecesi (su damlasının yüzey ile temas açısı, θ) belirlenmiştir. Normal (θ=59o<90o: hidrofilik), hidrofobik (θ=93o>90o) ve süperhidrofobik (θ=154o>150o) olmak üzere üç farklı kanat profile yüzeyi elde edilmiştir. Bu üç farklı durum için, kaldırma ve sürüklenme katsayıları, 15 m/s (Re=253.196) serbest akım hızında ve 6 farklı hücum açısında (-10°, -5°, 0°, 5°, 10°, 15°) rüzgar tünelinde deneysel olarak belirlenerek birbiriyle karşılaştırılmıştır. Sonuçlar, normal (hidrofilik) kanat profiline, hidrofobik ve süperhidrofobik özellik kazandırılmasının kanat profilinin kaldırma katsayılarını tüm hücum açıları dikkate alındığında sırasıyla ortalama %15 ve %23 oranında iyileştirdiğini göstermiştir. Ayrıca normal (hidrofilik) kanat profiline, hidrofobik ve süperhidrofobik özellik kazandırılması kanat profilinin sürüklenme katsayılarını tüm hücum açıları dikkate alındığında sırasıyla ortalama %12 ve %20 oranında düşürmüştür.

References

  • Anonim 1, Airfoil Tools NACA 4418. (2020). http://airfoiltools.com/polar/details?polar=xf-naca4418-il-200000, Erişim tarihi 10.04.2020
  • Anonim 2, Bijl, H., and Timmer, N. (2020). Introduction to Aerospace Engineering Aerodynamics 9 &10, Erişim tarihi 10.04.2020
  • Campbell, B. A., and Bezos, G. M. (1989). Steady -State and Transitional Aerodynamic Characteristics of a Wing in Simulated Heavy Rain. NASA Technical Paper, 2932.
  • Cao, L., Jones, A. K., Sikka, V. K., Wu, J., and Gao, D. (2009). Anti-Icing superhydrophobic coatings. Langmuir, 25(21), 12444–12448. https://doi.org/10.1021/la902882b
  • De Pauw, D., and Dolatabadi, A. (2017). Effect of superhydrophobic coating on the anti-icing and deicing of an airfoil. Journal of Aircraft, 54(2), 490–499. https://doi.org/10.2514/1.C033828
  • Genç, S., Özışık, G., and Kahraman, N. (2008). Düz Flapli Naca0012 Kanat Profilinin Aerodinamik Performansinin Incelenmesi. Isı Bilimi ve Tekniği Dergisi, 28(1), 1–8.
  • Güzelbey, İ. H., Eraslan, Y., and Doğru, M. H. (2018). Performansı Açısından XFLR5 Kullanılarak Nümerik Olarak İncelenmesi. The Black Sea Journal of Sciences, 8(1), 48–65. https://doi.org/10.31466/kfbd.542566
  • Jung, S., Dorrestijn, M., Raps, D., Das, A., Megaridis, C. M., and Poulikakos, D. (2011). Are superhydrophobic surfaces best for icephobicity? Langmuir, 27(6), 3059–3066. https://doi.org/10.1021/la104762g
  • Kline, S. J. and F. A. McClintock. (1953). "Describing Uncertainties in Single-Sample Experiments," Mechanical Engineering, 3-8
  • Krishnan, K. G., Milionis, A., Loth, E., Farrell, T. E., Crouch, J. D., and Berry, D. H. (2017). Influence of hydrophobic and superhydrophobic surfaces on reducing aerodynamic insect residues. Applied Surface Science, 392, 723–731. https://doi.org/10.1016/j.apsusc.2016.09.096
  • Liu, Z., Gou, Y., Wang, J., and Cheng, S. (2008). Frost formation on a super-hydrophobic surface under natural convection conditions. International Journal of Heat and Mass Transfer, 51(25–26), 5975–5982. https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.026
  • Mahmoodi, M., Nosratollahi, M., and Chini, S. F. (2017). The potential of using superhydrophobic surfaces on airfoils and hydrofoils: a numerical approach. International Journal of Computational Materials Science and Surface Engineering, 7(1), 44. https://doi.org/10.1504/ijcmsse.2017.088726
  • Okulova, N., Taboryski, R., Sørensen, J. N., Shtork, S. I., and Okulov, V. L. (2018). Aerodynamic effect of icing/rain impacts on super-hydrophobic surfaces. AIP Conference Proceedings, 2027(November). https://doi.org/10.1063/1.5065139
  • Rhode, R. V. (1941). Some effects of rainfall on flith of airplanes and on instrument indications. NACA TN, 803. https://ntrs.nasa.gov/search.jsp?R=19930080785 2020-06-14T10:52:32+00:00Z
  • Wu, Z., and Cao, Y. (2015). Numerical simulation of flow over an airfoil in heavy rain via a two-way coupled Eulerian-Lagrangian approach. International Journal of Multiphase Flow, 69, 81–92. https://doi.org/10.1016/j.ijmultiphaseflow.2014.11.006
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Articles
Authors

Fevzi Şahin 0000-0002-4808-4915

İsmayil İsmailov 0000-0002-2796-5190

Hakan Özcan 0000-0002-7848-3650

Publication Date January 31, 2023
Submission Date October 27, 2022
Published in Issue Year 2023 Volume: 15 Issue: 1

Cite

APA Şahin, F., İsmailov, İ., & Özcan, H. (2023). Hidrofobik Kaplamanın Kanat Profillerinin Aerodinamik Parametrelerine Etkisinin Deneysel İncelenmesi. International Journal of Engineering Research and Development, 15(1), 186-194. https://doi.org/10.29137/umagd.1191778

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.