Research Article
BibTex RIS Cite

Tek Aşamalı Ortak Sinterleme Yapılarak Çeşitli Kalınlıklarda Üretilen Tek Odacıklı Anot Destekli Katı Oksit Yakıt Pillerinin Performansı

Year 2023, Volume: 15 Issue: 1, 195 - 211, 31.01.2023

Abstract

Bu çalışmada, tek aşamalı ortak sinterleme yöntemiyle yapılan anot destekli, düzlemsel tek odacıklı katı oksit yakıt pilinin performansı test edilmiştir. Ek olarak, azaltılmış elektrolit kalınlığının ve arttırılan anot kalınlığının (sinterleme sırasında düşük eğrilik elde edilmesinde faydalı olduğu kanıtlandığından dolayı) pil performansı üzerindeki etkileri araştırılmıştır. Tüm piller katot, elektrolit ve anot olarak: gadolinyum katkılı seryum-lantan stronsiyum kobaltit ferrit CGO-LSCF, gadolinyum katkılı seryum (CGO) ve nikel oksit- gadolinyum katkılı seryumdan (NiO-CGO) oluşmuştur. Her bir pil farklı kalınlıkta ve farklı kalınlık oranlarında gözenekli ve çok katmanlı yapılar halinde yapılmıştır. Bu pillerin performansları 600˚C sıcaklıkta tek haznede metan-oksijen karışımlarında test edilmiştir. Bu çalışma kapsamında anot kalınlığı 800 µm, elektrolit kalınlığı 20 µm ve katot kalınlığı 40 µm olan nihai düzlemsel pilin maksimum güç yoğunluğu ve açık devre voltajı, metan-oksijen oranı (R)’nın 1 olduğu ortamda sırasıyla 30.69 mW cm-2 ve 0.71 V olarak elde edilmiştir.

Supporting Institution

Çalışma; TC Milli Eğitim Bakanlığı, EPSRC'nin Hindistan-İngiltere İşbirliğine Dayalı Araştırma Girişiminin “ Katı Oksit Yakıt Pillerinin Hızlandırılmış Yaşlanma ve Bozulmasının Modellenmesi” Projesi (EP/I037059/1) ve EPSRC'nin İngiltere-Kore Ortak Araştırma Etkinliğinin “KOYP Yığınlarının İzlenmesi ve Kontrolü İçin Yeni Tanılama Araçları ve Teknikleri” Pprojesi (EP/M02346X/1) tarafından desteklenmiştir

References

  • Briault, P., Rieu, M., Laucournet, R., Morel, B., & Viricelle, J.-P. (2014). Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine. Journal of Power Sources, 268, 356–364. https://doi.org/10.1016/j.jpowsour.2014.06.061
  • Bucher, E., & Sitte, W. (2004). Defect chemical modeling of (La, Sr)(Co, Fe)O3-δ. Journal of Electroceramics, 13(1–3), 779–784. https://doi.org/10.1007/s10832-004-5192-x
  • Bucher, E., & Sitte, W. (2011). Long-term stability of the oxygen exchange properties of (La,Sr)1−z(Co,Fe)O3−δ in dry and wet atmospheres. Solid State Ionics, 192(1), 480–482. https://doi.org/10.1016/j.ssi.2010.01.006
  • Bucher, E., Sitte, W., Klauser, F., & Bertel, E. (2012). Impact of humid atmospheres on oxygen exchange properties, surface-near elemental composition, and surface morphology of La0.6Sr0.4CoO3-δ. Solid State Ionics, 208, 43–51. https://doi.org/10.1016/j.ssi.2011.12.005
  • Ding, C., Lin, H., Sato, K., Amezawa, K., Kawada, T., Mizusaki, J., & Hashida, T. (2010). Effect of thickness of Gd0.1Ce0.9O1.95 electrolyte films on electrical performance of anode-supported solid oxide fuel cells. Journal of Power Sources, 195(17), 5487–5492. https://doi.org/10.1016/j.jpowsour.2010.03.075
  • Guo, Y., Bessaa, M., Aguado, S., Steil, M. C., Rembelski, D., Rieu, M., … Farrusseng, D. (2013). An all porous solid oxide fuel cell (SOFC): a bridging technology between dual and single chamber SOFCs. Energy & Environmental Science, 6(7), 2119. https://doi.org/10.1039/c3ee40131f
  • Hao, Y., Shao, Z., Mederos, J., Lai, W., Goodwin, D. G., & Haile, S. M. (2006). Recent advances in single-chamber fuel-cells: Experiment and modeling. Solid State Ionics, 177(19–25), 2013–2021. https://doi.org/10.1016/j.ssi.2006.05.008
  • Hayd, J., Dieterle, L., Guntow, U., Gerthsen, D., & Ivers-Tiffée, E. (2011). Nanoscaled La0.6Sr0.4CoO3-δ as intermediate temperature solid oxide fuel cell cathode: Microstructure and electrochemical performance. Journal of Power Sources, 196(17), 7263–7270. https://doi.org/10.1016/j.jpowsour.2010.11.147
  • Hibino, T., Hashimoto, A., Inoue, T., Tokuno, J., Yoshida, S., & Sano, M. (2000). Single-chamber solid oxide fuel cells at ıntermediate temperatures with various hydrocarbon-air mixtures. Journal of The Electrochemical Society, 147(8), 2888–2892. https://doi.org/10.1149/1.1393621
  • Hibino, T., Tsunekawa, H., Tanimoto, S., & Sano, M. (2000). Improvement of a single-chamber solid-oxide fuel cell and evaluation of new cell designs. Journal of The Electrochemical Society, 147(4), 1338. https://doi.org/10.1149/1.1393359
  • Ii, J. C. F., & Chuang, S. S. C. (2009). Investigating the CH4 reaction pathway on a novel LSCF anode catalyst in the SOFC. Catalysis Communications, 10(6), 772–776. https://doi.org/10.1016/j.catcom.2008.11.035
  • Kuhn, M., & Napporn, T. W. (2010). Single-Chamber Solid Oxide Fuel Cell Technology – From its origins to today’s state of the art. Energies, 3(1), 57–134. https://doi.org/10.3390/en30x000x
  • Leng, Y., Chan, S. H., & Liu, Q. (2008). Development of LSCF-GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte. International Journal of Hydrogen Energy, 33(14), 3808–3817. https://doi.org/10.1016/j.ijhydene.2008.04.034
  • Liu, M., & Lü, Z. (2013). Effect of stack configurations on single chamber solid oxide fuel cell, anode-cathode, anode-anode, and cathode-cathode configuration. Electrochimica Acta, 104, 64–68. https://doi.org/10.1016/j.electacta.2013.04.092
  • Liu, R. R., Kim, S. H., Taniguchi, S., Oshima, T., Shiratori, Y., Ito, K., & Sasaki, K. (2011). Influence of water vapor on long-term performance and accelerated degradation of solid oxide fuel cell cathodes. Journal of Power Sources, 196(17), 7090–7096. https://doi.org/10.1016/j.jpowsour.2010.08.014
  • Maryland Tape Casting Ltd, ABD. (2017). http://www.marylandtapecasting.com/
  • Meunier, M. (2016). Performance and ageing of an anode-supported SOFC operated in single-chamber conditions. Journal of Power Sources, 153(1), 108–113. https://doi.org/10.1016/j.jpowsour.2005.03.138
  • Morel, B., Roberge, R., Savoie, S., Napporn, T. W., & Meunier, M. (2007). An experimental evaluation of the temperature gradient in solid oxide fuel cells. Electrochemical and solid-state letters, 10(2), 2006–2008. https://doi.org/10.1149/1.2398729
  • Nagao, M., Yano, M., Okamoto, K., Tomita, A., Uchiyama, Y., Uchiyama, N., & Hibino, T. (2008). A single-chamber SOFC stack: Energy recovery from engine exhaust. Fuel Cells, 8(5), 322–329. https://doi.org/10.1002/fuce.200800017
  • Riess, I. (2008). On the single chamber solid oxide fuel cells. Journal of Power Sources, 175(1), 325–337. https://doi.org/10.1016/j.jpowsour.2007.09.041
  • Sayan, Y., Venkatesan, V., Guk, E., Wu, H., & Kim, J. S. (2018). Single-step fabrication of an anode supported planar single-chamber solid oxide fuel cell. International Journal of Applied Ceramic Technology, 15(6), 1375–1387. https://doi.org/10.1111/ijac.13012
  • Shimada, H., Suzuki, T., Yamaguchi, T., Sumi, H., Hamamoto, K., & Fujishiro, Y. (2016). Challenge for lowering concentration polarization in solid oxide fuel cells. Journal of Power Sources, 302, 53–60. https://doi.org/10.1016/j.jpowsour.2015.10.024
  • Shri Prakash, B., Senthil Kumar, S., & Aruna, S. T. (2014). Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review. Renewable and Sustainable Energy Reviews, 36, 149–179. https://doi.org/10.1016/j.rser.2014.04.043
  • Singhal, S. C., & Kendall, K. (2003). High Temperature Solid Oxide Fuel Cells:Fundementals, design and Applications. (S. C. Singhal & K. Kendall, Ed.). Oxford: Elsevier Advanced Technology.
  • Suzuki, T., Jasinski, P., Petrovsky, V., Anderson, H. U., & Dogan, F. (2004). Anode supported single chamber solid oxide fuel cell in CH4-air mixture. Journal of The Electrochemical Society, 151(9), A1473–A1476. https://doi.org/10.1149/1.1782141
  • Tian, Y., Lü, Z., Liu, M., Zhu, X., Wei, B., Zhang, Y., … Su, W. (2013). Effect of gas supply method on the performance of the single-chamber SOFC micro-stack and the single cells. Journal of Solid State Electrochemistry, 17(1), 269–275. https://doi.org/10.1007/s10008-012-1865-6
  • Tomita, A., Namekata, Y., Nagao, M., & Hibino, T. (2007). Room-temperature hydrogen sensors based on an In3+-Doped SnP2O7 Proton Conductor. Journal of the Electrochemical Society, 154(5), 172–176. https://doi.org/10.1149/1.2713702
  • Van Rij, L. N., Le, J., Van Landschoot, R. ., & Schoonman, J. (2001). A novel Ni-CERMET electrode based on a proton conducting electrolyte. Journal of materials science, 6, 1069–1076.
  • Viricelle, J.-P., Udroiu, S., Gadacz, G., Pijolat, M., & Pijolat, C. (2010). Development of single chamber solid oxide fuel cells (SCFC). Fuel Cells, 10(4), 683–692. https://doi.org/10.1002/fuce.200900146
  • Wang, S., Kobayashi, T., Dokiya, M., & Hashimoto, T. (2000). Electrical and ionic conductivity of Gd-doped ceria. Journal of The Electrochemical Society, 147(10), 3606–3609.
  • Yang, Z., Guo, M., Wang, N., Ma, C., Wang, J., & Han, M. (2017). A short review of cathode poisoning and corrosion in solid oxide fuel cell. International Journal of Hydrogen Energy, 42(39), 24948–24959. https://doi.org/10.1016/j.ijhydene.2017.08.057
  • Yano, M., Tomita, A., Sano, M., & Hibino, T. (2007). Recent advances in single-chamber solid oxide fuel cells: A review. Solid State Ionics, 177(39–40), 3351–3359. https://doi.org/10.1016/j.ssi.2006.10.014
  • Yin, J.-W., Zhang, C., Yin, Y.-M., Shi, H., Lin, Y., Lu, J., & Ma, Z.-F. (2015). Anode-supported single-chamber solid oxide fuel cell based on cobalt-free composite cathode of Nd0.5Sr0.5Fe0.8Cu0.2O3−δ–Sm0.2Ce0.8O1.9 at intermediate temperatures. Journal of Power Sources, 286, 217–223. https://doi.org/10.1016/j.jpowsour.2015.03.173
  • Zhang, C., Lin, Y., Ran, R., & Shao, Z. (2010). Improving single-chamber performance of an anode-supported SOFC by impregnating anode with active nickel catalyst. International Journal of Hydrogen Energy, 35(15), 8171–8176. https://doi.org/10.1016/j.ijhydene.2009.12.164 Zhao, T. S., & Ni, M. (2013). Solid Oxide Fuel Cell:From Materials to System Modelling. (T. S. Zhao & M. Ni, Ed.) (The Royal). Cambridge: The Royal Society of Chemistry. https://doi.org/10.1039/9781849737777
  • Zhao, Z., Liu, L., Zhang, X., Wu, W., Tu, B., Cui, D., … Cheng, M. (2013). High and low temperature behaviors of La0.6Sr0.4Co0.2Fe0.8O3-δ cathode operating under CO2/H2O-containing atmosphere. International Journal of Hydrogen Energy, 38(35), 15361–15370. https://doi.org/10.1016/j.ijhydene.2013.09.089
  • Zhu, X., Lü, Z., Wei, B., Zhang, Y., Huang, X., & Su, W. (2010). Fabrication and evaluation of a Ni/La0.75Sr0.25Cr0.5Fe0.5O3−δ co-impregnated yttria-stabilized zirconia anode for single-chamber solid oxide fuel cells. International Journal of Hydrogen Energy, 35(13), 6897–6904. https://doi.org/10.1016/j.ijhydene.2010.04.028

Performance of Anode Supported Single Chamber Solid Oxide Fuel Cells Produced in Various Thicknesses by Single-step Co-sintering

Year 2023, Volume: 15 Issue: 1, 195 - 211, 31.01.2023

Abstract

In this study, the performance of an anode supported planar single-chamber solid oxide fuel cell prepared by single-step co-sintering method is tested. Additionally, the effects of reduced electrolyte thickness and increased anode thickness (proven beneficial in achieving low curvature during sintering) on cell performance were investigated. All cells are composed of gadolinium-doped cerium-lanthanum strontium cobaltite ferrite (CGO-LSCF), gadolinium-doped cerium (CGO) and nickel oxide-gadolinium-doped cerium (NiO-CGO) as cathode, electrolyte and anode. Each cell is made of porous multi-layer structures with different thickness and thickness ratios. The performances of these cells were tested in methane-oxygen mixtures in a single chamber at 600˚C. The maximum power density and open circuit voltage of the final planar cell with a thickness of 800:20:40 µm, anode: electrolyte: cathode, were obtained as 30.69 mW cm-2 and 0.71 V respectively, in an environment with a methane-oxygen ratio (R) of 1.

References

  • Briault, P., Rieu, M., Laucournet, R., Morel, B., & Viricelle, J.-P. (2014). Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine. Journal of Power Sources, 268, 356–364. https://doi.org/10.1016/j.jpowsour.2014.06.061
  • Bucher, E., & Sitte, W. (2004). Defect chemical modeling of (La, Sr)(Co, Fe)O3-δ. Journal of Electroceramics, 13(1–3), 779–784. https://doi.org/10.1007/s10832-004-5192-x
  • Bucher, E., & Sitte, W. (2011). Long-term stability of the oxygen exchange properties of (La,Sr)1−z(Co,Fe)O3−δ in dry and wet atmospheres. Solid State Ionics, 192(1), 480–482. https://doi.org/10.1016/j.ssi.2010.01.006
  • Bucher, E., Sitte, W., Klauser, F., & Bertel, E. (2012). Impact of humid atmospheres on oxygen exchange properties, surface-near elemental composition, and surface morphology of La0.6Sr0.4CoO3-δ. Solid State Ionics, 208, 43–51. https://doi.org/10.1016/j.ssi.2011.12.005
  • Ding, C., Lin, H., Sato, K., Amezawa, K., Kawada, T., Mizusaki, J., & Hashida, T. (2010). Effect of thickness of Gd0.1Ce0.9O1.95 electrolyte films on electrical performance of anode-supported solid oxide fuel cells. Journal of Power Sources, 195(17), 5487–5492. https://doi.org/10.1016/j.jpowsour.2010.03.075
  • Guo, Y., Bessaa, M., Aguado, S., Steil, M. C., Rembelski, D., Rieu, M., … Farrusseng, D. (2013). An all porous solid oxide fuel cell (SOFC): a bridging technology between dual and single chamber SOFCs. Energy & Environmental Science, 6(7), 2119. https://doi.org/10.1039/c3ee40131f
  • Hao, Y., Shao, Z., Mederos, J., Lai, W., Goodwin, D. G., & Haile, S. M. (2006). Recent advances in single-chamber fuel-cells: Experiment and modeling. Solid State Ionics, 177(19–25), 2013–2021. https://doi.org/10.1016/j.ssi.2006.05.008
  • Hayd, J., Dieterle, L., Guntow, U., Gerthsen, D., & Ivers-Tiffée, E. (2011). Nanoscaled La0.6Sr0.4CoO3-δ as intermediate temperature solid oxide fuel cell cathode: Microstructure and electrochemical performance. Journal of Power Sources, 196(17), 7263–7270. https://doi.org/10.1016/j.jpowsour.2010.11.147
  • Hibino, T., Hashimoto, A., Inoue, T., Tokuno, J., Yoshida, S., & Sano, M. (2000). Single-chamber solid oxide fuel cells at ıntermediate temperatures with various hydrocarbon-air mixtures. Journal of The Electrochemical Society, 147(8), 2888–2892. https://doi.org/10.1149/1.1393621
  • Hibino, T., Tsunekawa, H., Tanimoto, S., & Sano, M. (2000). Improvement of a single-chamber solid-oxide fuel cell and evaluation of new cell designs. Journal of The Electrochemical Society, 147(4), 1338. https://doi.org/10.1149/1.1393359
  • Ii, J. C. F., & Chuang, S. S. C. (2009). Investigating the CH4 reaction pathway on a novel LSCF anode catalyst in the SOFC. Catalysis Communications, 10(6), 772–776. https://doi.org/10.1016/j.catcom.2008.11.035
  • Kuhn, M., & Napporn, T. W. (2010). Single-Chamber Solid Oxide Fuel Cell Technology – From its origins to today’s state of the art. Energies, 3(1), 57–134. https://doi.org/10.3390/en30x000x
  • Leng, Y., Chan, S. H., & Liu, Q. (2008). Development of LSCF-GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte. International Journal of Hydrogen Energy, 33(14), 3808–3817. https://doi.org/10.1016/j.ijhydene.2008.04.034
  • Liu, M., & Lü, Z. (2013). Effect of stack configurations on single chamber solid oxide fuel cell, anode-cathode, anode-anode, and cathode-cathode configuration. Electrochimica Acta, 104, 64–68. https://doi.org/10.1016/j.electacta.2013.04.092
  • Liu, R. R., Kim, S. H., Taniguchi, S., Oshima, T., Shiratori, Y., Ito, K., & Sasaki, K. (2011). Influence of water vapor on long-term performance and accelerated degradation of solid oxide fuel cell cathodes. Journal of Power Sources, 196(17), 7090–7096. https://doi.org/10.1016/j.jpowsour.2010.08.014
  • Maryland Tape Casting Ltd, ABD. (2017). http://www.marylandtapecasting.com/
  • Meunier, M. (2016). Performance and ageing of an anode-supported SOFC operated in single-chamber conditions. Journal of Power Sources, 153(1), 108–113. https://doi.org/10.1016/j.jpowsour.2005.03.138
  • Morel, B., Roberge, R., Savoie, S., Napporn, T. W., & Meunier, M. (2007). An experimental evaluation of the temperature gradient in solid oxide fuel cells. Electrochemical and solid-state letters, 10(2), 2006–2008. https://doi.org/10.1149/1.2398729
  • Nagao, M., Yano, M., Okamoto, K., Tomita, A., Uchiyama, Y., Uchiyama, N., & Hibino, T. (2008). A single-chamber SOFC stack: Energy recovery from engine exhaust. Fuel Cells, 8(5), 322–329. https://doi.org/10.1002/fuce.200800017
  • Riess, I. (2008). On the single chamber solid oxide fuel cells. Journal of Power Sources, 175(1), 325–337. https://doi.org/10.1016/j.jpowsour.2007.09.041
  • Sayan, Y., Venkatesan, V., Guk, E., Wu, H., & Kim, J. S. (2018). Single-step fabrication of an anode supported planar single-chamber solid oxide fuel cell. International Journal of Applied Ceramic Technology, 15(6), 1375–1387. https://doi.org/10.1111/ijac.13012
  • Shimada, H., Suzuki, T., Yamaguchi, T., Sumi, H., Hamamoto, K., & Fujishiro, Y. (2016). Challenge for lowering concentration polarization in solid oxide fuel cells. Journal of Power Sources, 302, 53–60. https://doi.org/10.1016/j.jpowsour.2015.10.024
  • Shri Prakash, B., Senthil Kumar, S., & Aruna, S. T. (2014). Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review. Renewable and Sustainable Energy Reviews, 36, 149–179. https://doi.org/10.1016/j.rser.2014.04.043
  • Singhal, S. C., & Kendall, K. (2003). High Temperature Solid Oxide Fuel Cells:Fundementals, design and Applications. (S. C. Singhal & K. Kendall, Ed.). Oxford: Elsevier Advanced Technology.
  • Suzuki, T., Jasinski, P., Petrovsky, V., Anderson, H. U., & Dogan, F. (2004). Anode supported single chamber solid oxide fuel cell in CH4-air mixture. Journal of The Electrochemical Society, 151(9), A1473–A1476. https://doi.org/10.1149/1.1782141
  • Tian, Y., Lü, Z., Liu, M., Zhu, X., Wei, B., Zhang, Y., … Su, W. (2013). Effect of gas supply method on the performance of the single-chamber SOFC micro-stack and the single cells. Journal of Solid State Electrochemistry, 17(1), 269–275. https://doi.org/10.1007/s10008-012-1865-6
  • Tomita, A., Namekata, Y., Nagao, M., & Hibino, T. (2007). Room-temperature hydrogen sensors based on an In3+-Doped SnP2O7 Proton Conductor. Journal of the Electrochemical Society, 154(5), 172–176. https://doi.org/10.1149/1.2713702
  • Van Rij, L. N., Le, J., Van Landschoot, R. ., & Schoonman, J. (2001). A novel Ni-CERMET electrode based on a proton conducting electrolyte. Journal of materials science, 6, 1069–1076.
  • Viricelle, J.-P., Udroiu, S., Gadacz, G., Pijolat, M., & Pijolat, C. (2010). Development of single chamber solid oxide fuel cells (SCFC). Fuel Cells, 10(4), 683–692. https://doi.org/10.1002/fuce.200900146
  • Wang, S., Kobayashi, T., Dokiya, M., & Hashimoto, T. (2000). Electrical and ionic conductivity of Gd-doped ceria. Journal of The Electrochemical Society, 147(10), 3606–3609.
  • Yang, Z., Guo, M., Wang, N., Ma, C., Wang, J., & Han, M. (2017). A short review of cathode poisoning and corrosion in solid oxide fuel cell. International Journal of Hydrogen Energy, 42(39), 24948–24959. https://doi.org/10.1016/j.ijhydene.2017.08.057
  • Yano, M., Tomita, A., Sano, M., & Hibino, T. (2007). Recent advances in single-chamber solid oxide fuel cells: A review. Solid State Ionics, 177(39–40), 3351–3359. https://doi.org/10.1016/j.ssi.2006.10.014
  • Yin, J.-W., Zhang, C., Yin, Y.-M., Shi, H., Lin, Y., Lu, J., & Ma, Z.-F. (2015). Anode-supported single-chamber solid oxide fuel cell based on cobalt-free composite cathode of Nd0.5Sr0.5Fe0.8Cu0.2O3−δ–Sm0.2Ce0.8O1.9 at intermediate temperatures. Journal of Power Sources, 286, 217–223. https://doi.org/10.1016/j.jpowsour.2015.03.173
  • Zhang, C., Lin, Y., Ran, R., & Shao, Z. (2010). Improving single-chamber performance of an anode-supported SOFC by impregnating anode with active nickel catalyst. International Journal of Hydrogen Energy, 35(15), 8171–8176. https://doi.org/10.1016/j.ijhydene.2009.12.164 Zhao, T. S., & Ni, M. (2013). Solid Oxide Fuel Cell:From Materials to System Modelling. (T. S. Zhao & M. Ni, Ed.) (The Royal). Cambridge: The Royal Society of Chemistry. https://doi.org/10.1039/9781849737777
  • Zhao, Z., Liu, L., Zhang, X., Wu, W., Tu, B., Cui, D., … Cheng, M. (2013). High and low temperature behaviors of La0.6Sr0.4Co0.2Fe0.8O3-δ cathode operating under CO2/H2O-containing atmosphere. International Journal of Hydrogen Energy, 38(35), 15361–15370. https://doi.org/10.1016/j.ijhydene.2013.09.089
  • Zhu, X., Lü, Z., Wei, B., Zhang, Y., Huang, X., & Su, W. (2010). Fabrication and evaluation of a Ni/La0.75Sr0.25Cr0.5Fe0.5O3−δ co-impregnated yttria-stabilized zirconia anode for single-chamber solid oxide fuel cells. International Journal of Hydrogen Energy, 35(13), 6897–6904. https://doi.org/10.1016/j.ijhydene.2010.04.028
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Engineering, Mechanical Engineering
Journal Section Articles
Authors

Yunus Sayan 0000-0002-0871-6842

Jung-sik Kim 0000-0002-3696-7251

Houzheng Wu 0000-0002-7628-3890

Publication Date January 31, 2023
Submission Date November 16, 2022
Published in Issue Year 2023 Volume: 15 Issue: 1

Cite

APA Sayan, Y., Kim, J.-s., & Wu, H. (2023). Tek Aşamalı Ortak Sinterleme Yapılarak Çeşitli Kalınlıklarda Üretilen Tek Odacıklı Anot Destekli Katı Oksit Yakıt Pillerinin Performansı. International Journal of Engineering Research and Development, 15(1), 195-211.

All Rights Reserved. Kırıkkale University, Faculty of Engineering.