Review
BibTex RIS Cite

Farklı Matrisli Dökme Demirlerde Aşınma Özelliklerinin Gözden Geçirilmesi

Year 2023, Volume: 15 Issue: 1, 297 - 311, 31.01.2023

Abstract

Bu çalışmada, literatürde yer alan farklı matrise sahip dökme demirlerde matris yapı türlerinin aşınma özelliklerine etkileri gözden geçirilmiştir. Dökme demirlerde (DD) matris ferritik olduğunda aşınma kaybı her zaman daha yüksek olmaktadır. Perlitik matrisli DD’lerde aşınma direnci lamellar arası mesafe azaldıkça artmaktadır. Ferritik-perlitik çift matrisli DD’lerde aşınma direnci, perlit hacim oranındaki artışa paralellik göstermektedir. Martensitik matrisli DD’lerde aşındırıcıların kırılma miktarı artarak artan aşınmaya katkıda bulunmaktadır. Ferritik+martensitik çift matrisli DD’lerde martensitik yapı hacim oranı arttıkça aşındırıcı aşınma kaybı azalmaktadır. Östenitik matrisli DD’lerde östenitin daha düşük sertliği ve daha yüksek derecede plastik deformasyonu nedeniyle matrisin güçlü pekleşme sertleşmesi diğer matris yapılarınkini aşan bir sertlikle sonuçlanarak diğer matrislerden daha iyi aşınma direnci sergilemektedir. Ösferritik matrisli DD’lerde aşınma testi sırasında yüksek bölgesel gerilme veya plastik deformasyonun neden olduğu gerilim kaynaklı östenitten martensite dönüşüm (Transformation induced plasticity-TRIP) aşınma direncini artırmaktadır. Ayrıca yüksek aşınma direncine ösferritik yapının pekleşmeside katkıda bulunmaktadır. Ferritik+Ösferritik çift matrisli DD’lerde ösferritik yapı hacim oranı arttıkça aşındırıcı aşınma kaybı azalmaktadır. Literatürdeki çalışmaların sonuçlarına göre, aşınma direnci açısından matris türleri birbirleri ile karşılaştırıldığında genel olarak östenitik matrisler > ösferritik matrisler > martensitik matrisler > perlitik matrisler > ferritik olarak görülebilir. Aşınma direnci açısından çift matris türleri birbirleri ile karşılaştırıldığında ise genel olarak ferritik+ösferritik matrisler > ferritik+martensitik matrisler > ferritik+perlitik matrisler sıralamasını takip etmektedir.

Supporting Institution

Gazi Üniversitesi

Project Number

GÜBAP 07/2019-20

Thanks

Çalışmamızı destekleyen Gazi Üniversitesi Bilimsel Araştırma Projeleri birimine (GÜBAP 07/2019-20) teşekkür ederiz.

References

  • Abedi, H. R., Fareghi, A., Saghafian, H., Kheirandish, S. H. (2010). Sliding wear behavior of a ferritic–pearlitic ductile cast iron with different nodule count. Wear, 268(3), 622-628, 10.1016/j.wear.2009.10.010.
  • Ahmadabadi M, Nategh S, Davami P. (1991). Wear behavior of austempered ductile iron. Cast Metals, 4(4), 188–194. 10.1080/09534962.1991.11819079
  • Balachandran, G., Vadiraj, A., Kamaraj, M., Kazuya, E. (2011). Mechanical and wear behavior of alloyed gray cast iron in the quenched and tempered and austempered conditions. Materials & Design, 32(7), 4042-4049, 10.1016/j.matdes.2011.03.054.
  • Balos, S., Rajnovic, D., Dramicanin, M., Labus, D., Eric-Cekic, O., Grbovic-Novakovic, J., Sidjanin, L. (2016). Abrasive wear behaviour of ADI material with various retained austenite content. International Journal of Cast Metals Research, 29(4), 187-193, 10.1080/13640461.2015.1125982.
  • Batra U, Batra N, Sharma J. (2013). Wear performance of Cu-alloyed austempered ductile iron. Journal of Materials Engineering and Performance, 22(4), 1136-1142, 10.1007/s11665-012-0380-3.
  • Cardoso, P. H. S., Israel, C. L., Strohaecker, T. R. (2014). Abrasive wear in Austempered Ductile Irons: A comparison with white cast irons. Wear, 313(1-2), 29- 33, 10.1016/j.wear.2014.02.009.
  • Chiniforush, E. A., Rahimi, M. A., Yazdani, S. (2016). Dry sliding wear of Ni alloyed austempered ductile iron. China Foundry, 13(5), 361-367.
  • Coronado, J. J., Sinatora, A. (2009). Abrasive wear study of white cast iron with different solidification rates. Wear, 267(11), 2116-2121, 10.1016/j.wear.2009.08.012.
  • Daber, S., Ravishankar, K. S., Prasad Rao, P. (2008). Influence of austenitising temperature on the formation of strain induced martensite in austempered ductile iron. Journal of materials science, 43(14), 4929-4937, 10.1007/s10853-008-2717-8.
  • Filipovic, M., Kamberovic, Z., Korac, M., Gavrilovski, M. (2013). Correlation of microstructure with the wear resistance and fracture toughness of white cast iron alloys. Metals and materials international, 19(3), 473-481, 10.1007/s12540-013-3013-y.
  • Ghaderi A, Ahmadabadi M, Ghasemi H. (2003). Effect of graphite morphologies on the tribological behavior of austempered ductile iron. Wear, 255(1), 410–6, 10.1016/S0043-1648(03)00156-X.
  • Han C, Wang Q, Sun Y, Li J. (2015). Effects of molybdenum on the wear resistance and corrosion resistance of carbidic austempered ductile iron. Metall Microst Anal, 4(4), 298–304
  • Haseeb A, Aminul Islam M, Mohar Ali Bepari M. (2000). Tribological behaviour of quenched and tempered, and austempered ductile iron at the same hardness level. Wear, 244, 15–19, 10.1016/S0043-1648(00)00404-X.
  • Keough, J., Hayrynen, K. (2005). Wear Properties of Austempered Ductile Irons. SAE Technical Paper, 01-1690.
  • Krzynska A, Chmielewski T, Stolinski A. (2015). Comparison of austempered ductile iron and manganesesteel wearability. Arch Found Eng, 15, 51–54.
  • Kumari U, Rao P. (2009). Study of wear behavior of austempered ductile iron.J Mater Sci,44,1082–1093, 10.1007/s10853-008-3195-
  • Laird, G., Gundlach, R. and Rohrig, K., (2000). Abrasion Resistant. Cast Iron Handbook, 1st ed, American Foundry Society, Des Plaines, IL.
  • Lee S, Kim H, Kim J, Chun B, Kim C, Choi C. (1999). Effect of alloy elements on the wear resistance of austempered ductile iron. J Kor Found Soc,19(1),24–32.
  • Lerner, Y. S., and G. R. Kingsbury. (1997). Wear resistance properties of austempered ductile iron. Journal of Materials Engineering and Performance, 7(1), 48-52.
  • Sahin Y, Durak O. (2007). Abrasive wear behavior of austempered ductile iron. Materials & Design, 28(6):1844–1850, 10.1016/j.matdes.2006.04.015.
  • Sahin Y, Erdogan M, Kilicli V. (2007). Wear behavior of austempered ductile irons with dual matrix structures. Mater Sci Eng, 444(1), 31–8 10.1016/j.msea.2006.06.071.
  • Sahin Y, Kilicli V, Ozer M, Erdogan M. (2010). Comparison of abrasive wear behavior of ductile iron with different dual matrix structures. Wear, 268, 152–265, 10.1016/j.wear.2009.07.008.
  • Scandian, C., Boher, C., De Mello, J. D. B., Rezai-Aria, F. (2009). Effect of molybdenum and chromium contents in sliding wear of high-chromium white cast iron: The relationship between microstructure and wear. Wear, 267(1-4), 401-408, 10.1016/j.wear.2008.12.095.
  • Sellamuthu P, Samuel D, Dinakaran D, Premkumar V, Li Z,Seetharaman S. (2018). Austempered ductile iron (ADI): influence of austempering temperature on microstructure, mechanical and wear properties and energy consumption. Metals, 8(1), 53, 10.3390/met8010053.
  • Sharma S, Gupta R. (2015). Effect of austempering temperature and time on the wear characteristics of austempered ductile iron (ADI). Int J Eng Res Gener Sci,3(1),986–90.
  • Turenne, S., Lavallee, F., Masounave, J. (1989). Matrix microstructure effect on the abrasion wear resistance of high-chromium white cast iron. Journal of materials science, 24(8), 3021-3028.
  • Vadiraj, A., Balachandran, G., Kamaraj, M., Gopalakrishna, B., Rao, K. P. (2010). Studies on mechanical and wear properties of alloyed hypereutectic gray cast irons in the as-cast pearlitic and austempered conditions. Materials & Design, 31(2), 951-955, 10.1016/j.matdes.2009.07.030.
  • Velez J, Tanaka D, Sinatora A, Tschiptschin A. (2001). Evaluation of abrasive wear of ductile cast iron in a single pass pendulum device. Wear, 251, 1315–1319, 10.1016/S0043-1648(01)00760-8.
  • Wang B, Barber G, Tao C, Sun X, Ran X. (2018). Characteristics of tempering response of austempered ductile iron. J Mater Res Technol, 7(2), 198–202, 10.1016/j.jmrt.2017.08.011.
  • Wang B, Barber G, Sun X, Shaw M, Seaton P. (2017). Characteristics of the transformation of retained austenite in tempered austempered ductile iron. J Mater Eng Perform, 26(5), 2095–2101, 10.1007/s11665-017-2663-1.
  • Wang, B., Barber, G. C., Qiu, F., Zou, Q., Yang, H. (2020). A review: phase transformation and wear mechanisms of single-step and dual-step austempered ductile irons. Journal of Materials Research and Technology, 9(1), 1054-1069, 10.1016/j.jmrt.2019.10.074.
  • Wen F, Zhao J, Zheng D, He K, Shangguan J. (2019). The role of bainite in wear and friction behavior of austempered ductile iron. Materials,12(5), 767, 10.3390/ma12050767.
  • Woodward, R. G., Toumpis, A., Galloway, A. (2022). The influence of cementite spheroidizing duration on the microstructure and sliding wear response of grey cast iron against AISI 4330. Wear, 488, 204155.
  • Zimba J, Mamandi M, Yu D, Chandra T, Navara E, Simbi D. (2004). Un-lubricated sliding wear performance of unalloyed austempered ductile iron under high contact stresses. Mater Des, 25, 431–438, 10.1016/J.MATDES.2003.11.004.
  • Zhang, J., Zhang, N., Zhang, M., Zeng, D., Song, Q., Lu, L. (2014). Rolling–sliding wear of austempered ductile iron with different strength grades. Wear, 318(1-2), 62-67, 10.1016/j.wear.2014.06.015.
  • Zhou W, Zhou Q, Meng S. (1993). Abrasion resistance of austempered ductile iron. Cast Metals, 6(2), 69–75, 10.1080/09534962.1993.11819129

Review Of Wear Properties In Different Matrix Cast Irons

Year 2023, Volume: 15 Issue: 1, 297 - 311, 31.01.2023

Abstract

In this study, the effects of matrix structure types on the wear properties of cast irons with different matrices in the literature were reviewed. In cast irons (CI), the wear loss is always higher when the matrix is ferritic. Wear resistance of pearlitic matrix CIs increases with decreasing lamella distance. The wear resistance of ferritic-pearlitic dual matrix CIs shows parallelism with the increase in the pearlite volume fraction. In CIs with martensitic matrix, the fracture rate of abrasives increases, contributing to increased wear. In CIs with ferritic+martensitic dual matrix, abrasive wear loss decreases as the martensitic structure volume fraction increases. In CIs with austenitic matrix, the strong strain hardening of the matrix results in a hardness exceeding that of other matrix structures, exhibiting better wear resistance than other matrices, due to the lower hardness and higher degree of plastic deformation of the austenite. In CIs with ausferritic matrix, stress-induced austenite-to-martensite transformation (TRIP) caused by high local stress or plastic deformation during the abrasion test increases the wear resistance. In addition, the hardening of the ausferritic structure contributes to the high wear resistance. In CIs with Ferritic+Ausferritic dual matrix, abrasive wear loss decreases as the ausferritic structure volume fraction increases. According to the results of the studies in the literature, when the matrix types are compared with each other in terms of wear resistance, generally austenitic matrices > ausferritic matrices > martensitic matrices > pearlitic matrices > ferritic. When dual matrix types are compared with each other in terms of wear resistance, they generally follow the order of ferritic+ausferritic matrices > ferritic+martensitic matrices > ferritic+pelitic matrices.

Project Number

GÜBAP 07/2019-20

References

  • Abedi, H. R., Fareghi, A., Saghafian, H., Kheirandish, S. H. (2010). Sliding wear behavior of a ferritic–pearlitic ductile cast iron with different nodule count. Wear, 268(3), 622-628, 10.1016/j.wear.2009.10.010.
  • Ahmadabadi M, Nategh S, Davami P. (1991). Wear behavior of austempered ductile iron. Cast Metals, 4(4), 188–194. 10.1080/09534962.1991.11819079
  • Balachandran, G., Vadiraj, A., Kamaraj, M., Kazuya, E. (2011). Mechanical and wear behavior of alloyed gray cast iron in the quenched and tempered and austempered conditions. Materials & Design, 32(7), 4042-4049, 10.1016/j.matdes.2011.03.054.
  • Balos, S., Rajnovic, D., Dramicanin, M., Labus, D., Eric-Cekic, O., Grbovic-Novakovic, J., Sidjanin, L. (2016). Abrasive wear behaviour of ADI material with various retained austenite content. International Journal of Cast Metals Research, 29(4), 187-193, 10.1080/13640461.2015.1125982.
  • Batra U, Batra N, Sharma J. (2013). Wear performance of Cu-alloyed austempered ductile iron. Journal of Materials Engineering and Performance, 22(4), 1136-1142, 10.1007/s11665-012-0380-3.
  • Cardoso, P. H. S., Israel, C. L., Strohaecker, T. R. (2014). Abrasive wear in Austempered Ductile Irons: A comparison with white cast irons. Wear, 313(1-2), 29- 33, 10.1016/j.wear.2014.02.009.
  • Chiniforush, E. A., Rahimi, M. A., Yazdani, S. (2016). Dry sliding wear of Ni alloyed austempered ductile iron. China Foundry, 13(5), 361-367.
  • Coronado, J. J., Sinatora, A. (2009). Abrasive wear study of white cast iron with different solidification rates. Wear, 267(11), 2116-2121, 10.1016/j.wear.2009.08.012.
  • Daber, S., Ravishankar, K. S., Prasad Rao, P. (2008). Influence of austenitising temperature on the formation of strain induced martensite in austempered ductile iron. Journal of materials science, 43(14), 4929-4937, 10.1007/s10853-008-2717-8.
  • Filipovic, M., Kamberovic, Z., Korac, M., Gavrilovski, M. (2013). Correlation of microstructure with the wear resistance and fracture toughness of white cast iron alloys. Metals and materials international, 19(3), 473-481, 10.1007/s12540-013-3013-y.
  • Ghaderi A, Ahmadabadi M, Ghasemi H. (2003). Effect of graphite morphologies on the tribological behavior of austempered ductile iron. Wear, 255(1), 410–6, 10.1016/S0043-1648(03)00156-X.
  • Han C, Wang Q, Sun Y, Li J. (2015). Effects of molybdenum on the wear resistance and corrosion resistance of carbidic austempered ductile iron. Metall Microst Anal, 4(4), 298–304
  • Haseeb A, Aminul Islam M, Mohar Ali Bepari M. (2000). Tribological behaviour of quenched and tempered, and austempered ductile iron at the same hardness level. Wear, 244, 15–19, 10.1016/S0043-1648(00)00404-X.
  • Keough, J., Hayrynen, K. (2005). Wear Properties of Austempered Ductile Irons. SAE Technical Paper, 01-1690.
  • Krzynska A, Chmielewski T, Stolinski A. (2015). Comparison of austempered ductile iron and manganesesteel wearability. Arch Found Eng, 15, 51–54.
  • Kumari U, Rao P. (2009). Study of wear behavior of austempered ductile iron.J Mater Sci,44,1082–1093, 10.1007/s10853-008-3195-
  • Laird, G., Gundlach, R. and Rohrig, K., (2000). Abrasion Resistant. Cast Iron Handbook, 1st ed, American Foundry Society, Des Plaines, IL.
  • Lee S, Kim H, Kim J, Chun B, Kim C, Choi C. (1999). Effect of alloy elements on the wear resistance of austempered ductile iron. J Kor Found Soc,19(1),24–32.
  • Lerner, Y. S., and G. R. Kingsbury. (1997). Wear resistance properties of austempered ductile iron. Journal of Materials Engineering and Performance, 7(1), 48-52.
  • Sahin Y, Durak O. (2007). Abrasive wear behavior of austempered ductile iron. Materials & Design, 28(6):1844–1850, 10.1016/j.matdes.2006.04.015.
  • Sahin Y, Erdogan M, Kilicli V. (2007). Wear behavior of austempered ductile irons with dual matrix structures. Mater Sci Eng, 444(1), 31–8 10.1016/j.msea.2006.06.071.
  • Sahin Y, Kilicli V, Ozer M, Erdogan M. (2010). Comparison of abrasive wear behavior of ductile iron with different dual matrix structures. Wear, 268, 152–265, 10.1016/j.wear.2009.07.008.
  • Scandian, C., Boher, C., De Mello, J. D. B., Rezai-Aria, F. (2009). Effect of molybdenum and chromium contents in sliding wear of high-chromium white cast iron: The relationship between microstructure and wear. Wear, 267(1-4), 401-408, 10.1016/j.wear.2008.12.095.
  • Sellamuthu P, Samuel D, Dinakaran D, Premkumar V, Li Z,Seetharaman S. (2018). Austempered ductile iron (ADI): influence of austempering temperature on microstructure, mechanical and wear properties and energy consumption. Metals, 8(1), 53, 10.3390/met8010053.
  • Sharma S, Gupta R. (2015). Effect of austempering temperature and time on the wear characteristics of austempered ductile iron (ADI). Int J Eng Res Gener Sci,3(1),986–90.
  • Turenne, S., Lavallee, F., Masounave, J. (1989). Matrix microstructure effect on the abrasion wear resistance of high-chromium white cast iron. Journal of materials science, 24(8), 3021-3028.
  • Vadiraj, A., Balachandran, G., Kamaraj, M., Gopalakrishna, B., Rao, K. P. (2010). Studies on mechanical and wear properties of alloyed hypereutectic gray cast irons in the as-cast pearlitic and austempered conditions. Materials & Design, 31(2), 951-955, 10.1016/j.matdes.2009.07.030.
  • Velez J, Tanaka D, Sinatora A, Tschiptschin A. (2001). Evaluation of abrasive wear of ductile cast iron in a single pass pendulum device. Wear, 251, 1315–1319, 10.1016/S0043-1648(01)00760-8.
  • Wang B, Barber G, Tao C, Sun X, Ran X. (2018). Characteristics of tempering response of austempered ductile iron. J Mater Res Technol, 7(2), 198–202, 10.1016/j.jmrt.2017.08.011.
  • Wang B, Barber G, Sun X, Shaw M, Seaton P. (2017). Characteristics of the transformation of retained austenite in tempered austempered ductile iron. J Mater Eng Perform, 26(5), 2095–2101, 10.1007/s11665-017-2663-1.
  • Wang, B., Barber, G. C., Qiu, F., Zou, Q., Yang, H. (2020). A review: phase transformation and wear mechanisms of single-step and dual-step austempered ductile irons. Journal of Materials Research and Technology, 9(1), 1054-1069, 10.1016/j.jmrt.2019.10.074.
  • Wen F, Zhao J, Zheng D, He K, Shangguan J. (2019). The role of bainite in wear and friction behavior of austempered ductile iron. Materials,12(5), 767, 10.3390/ma12050767.
  • Woodward, R. G., Toumpis, A., Galloway, A. (2022). The influence of cementite spheroidizing duration on the microstructure and sliding wear response of grey cast iron against AISI 4330. Wear, 488, 204155.
  • Zimba J, Mamandi M, Yu D, Chandra T, Navara E, Simbi D. (2004). Un-lubricated sliding wear performance of unalloyed austempered ductile iron under high contact stresses. Mater Des, 25, 431–438, 10.1016/J.MATDES.2003.11.004.
  • Zhang, J., Zhang, N., Zhang, M., Zeng, D., Song, Q., Lu, L. (2014). Rolling–sliding wear of austempered ductile iron with different strength grades. Wear, 318(1-2), 62-67, 10.1016/j.wear.2014.06.015.
  • Zhou W, Zhou Q, Meng S. (1993). Abrasion resistance of austempered ductile iron. Cast Metals, 6(2), 69–75, 10.1080/09534962.1993.11819129
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Engineering, Materials Engineering (Other)
Journal Section Articles
Authors

Ruziye Çamkerten 0000-0001-7593-6573

Project Number GÜBAP 07/2019-20
Publication Date January 31, 2023
Submission Date December 27, 2022
Published in Issue Year 2023 Volume: 15 Issue: 1

Cite

APA Çamkerten, R. (2023). Farklı Matrisli Dökme Demirlerde Aşınma Özelliklerinin Gözden Geçirilmesi. International Journal of Engineering Research and Development, 15(1), 297-311.

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.