Research Article
BibTex RIS Cite

Kompozit Roket Yakıtının Yanma Hızı Üzerine Ortam Basıncının ve Başlangıç Sıcaklığının Etkileri

Year 2023, Volume: 15 Issue: 2, 371 - 377, 14.07.2023
https://doi.org/10.29137/umagd.1213570

Abstract

Rocket engines using composite rocket propellant are preferred in military applications because they can be stored for a long time and are ready to fire at any time. In this study, the effects of the initial temperature and ambient pressure of the composite rocket propellant on the burning rate were investigated. The combustion temperature of the sample was determined with a closed bomb calorimeter. Burning rate was determined at 241, 294 and 343 K ambient temperatures and using a strand burner device. Burning rate of composite rocket propellant increased with increasing ambient pressure. It was determined that the burning rate increased with the increase in the initial temperature of the combustion chamber.

References

  • Atwood, A. I., Boggs, T. L., Curran, P. O., Parr, T. P., Hanson-Parr, D. M., Price, C. F., & Wiknich, J. (1999). Burning rate of solid propellant ingredients, part 1: Pressure and initial temperature effects, Journal of Propulsion and Power, 15 (6), 740-747.
  • Bae, S. B., Kim, C. K., Kim, K., & Chung, I. J. (2008). The effect of organic modifiers with different chain lengths on the dispersion of clay layers in HTPB (hydroxyl terminated polybutadiene), European Polymer Journal, 44, 3385–3392.
  • Bastress, E. K. (1961). Modification of the burning rates of ammonium perchlorate solid propellants by particle size control. Princeton University.
  • Bossi, I., Ferriello, P., & De Luca, L. (2001). Acoustic emission of underwater burning composite solid rocket propellants. In XVI Congresso Nazionale AIDAA, 2001, 24-28 September, Palermo, Pa, Italy (Vol. 12).
  • Cohen, N. S., & Strand, L. D. (1982). An improved model for the combustion of AP composite propellants, AIAA journal, 20 (12), 1739-1746.
  • Dokhan, A., Price, E.W., Sigmant, R.K., & Seitzman, J. M. (2001). The Effects of Al Particle Size on the Burning Rate and Residual Oxide in Aluminized Propellents. 37th AIAA/ASME/SAE/ASEE Joint Prooulsion Conference and Exhibit.
  • Dönmez, C.E. (2018). Kompozit esaslı katı roket yakıt numunesinin karaktersitik özelliklerinin deneysel incelenmesi, Yüksek lisans tezi, Kırıkkale Üniversitesi. Kirikkale, Turkiye.
  • Ghorpade, V.G., Dey, A., Jawale, L.S., Kotbagi, A.M., Kumar A., & Gupta, M. (2010). Study of Burn Rate Suppressants in AP-Based Composite Propellants. Propellants Explos. Pyrotech., 35, 53 – 56
  • Jain, S., Gupta, G., Kshirsagar, D.R., Khire, V.H., & Kandasubramanian, B. (2019). Burning rate and other characteristics of strontium titanate (SrTiO3) supplemented AP/HTPB/Al composite propellants. Defence technology 15, 313 – 318.
  • Jayaraman, K. V. A. K., Anand, K. V., Chakravarthy, S. R., & Sarathi, R. (2009). Effect of nano-aluminium in plateau-burning and catalyzed composite solid propellant combustion. Combustion and Flame, 156(8), 1662-1673.
  • Kshirsagar, D.R., Jain, S., Jawalkar, S.N., Naik, N.H., Pawar, S., & Maurya, M. (2016). Evaluation of Nano-Co3O4 in HTPB-Based Composite Propellant Formulations. Propellants Explos. Pyrotech., 41, 304 – 311
  • Kubota, N. (2002). Propellants and Explosives Thermochemical aspects of Combustion. Wiley, Germany.
  • Lu, K.T., Yang, T.M., Li, J.S., & Yeh, T.F. (2012). Study on the burning characterıstics of ap/al/htpb composite solid propellant containing nano-sized ferric oxide powder. Combust. Sci. Technol., 184, 2100–2116,
  • MIL–STD–286C (1991). Military Standard Propellants, Solid, Sampling, Examination and Testing. Department of Defense, USA.
  • Park, S. J., Choi, S. H., & Park, J. H. (2021). Properties of Composite Solid Propellants Containing α‐FeOOH. Propellants, Explosives, Pyrotechnics, 46 (1), 84-89.
  • Shioya, S., Kohga, M., & Naya, T. (2014). Burning characteristics of ammonium perchlorate-based composite propellant supplemented with diatomaceous earth. Combustion and Flame, 161, 620-630.
  • Spurling, A. (2013). Effects of initial bulk temperatures on a propellant's pressure-coupled response, International Journal of Energetic Materials and Chemical Propulsion, 12 (5).
  • Styborski, J.A., Scorza, M.J., Smith, M.N., & Oehlschlaeger, M.A. (2010). Iron Nanoparticle Additives as Burning Rate Enhancers in AP/HTPB Composite Propellants. Propellants Explos. Pyrotech., 35, 1 – 8
  • Sutton G.P., & Biblarz, O. (2017). Rocket Propulsion Elements, Wiley, Canada.
  • Trache, D., Maggi, F., Palmucci, I., DeLuca, L.T., Khimeche, K., Fassina, M., Dossi, S., & Colombo, G. (2019). Effect of amide-based compounds on the combustion characteristics of composite solid rocket propellants. Arabian Journal of Chemistry, 12, 3639-3651.
  • Varghese, T.L., & Krishnamurthy, V.N. (2017). The Chemistry and Technology of Solid Rocket Propellants (A Treatise, Allied publishers PVT LTD.
  • Yaman, H., Çelik, V., & Degirmenci, E. (2014). Experimental investigation of the factors affecting the burning rate of solid rocket propellants. Fuel, 115, 794–803.
  • Zhang, W., Xie, W. X., Fan, X. Z., Liu, F. L., Pang, W. Q., Yan, N., & Liu, Q. (2014). Effects of nano-aluminum on combustion characteristic of low smoke NEPE propellants. J. Solid Rocket Technol, 37, 516-520.

Effects of Ambient Pressure and Initial Temperature on the Burning Rate of Composite Rocket Propellant

Year 2023, Volume: 15 Issue: 2, 371 - 377, 14.07.2023
https://doi.org/10.29137/umagd.1213570

Abstract

Rocket engines using composite rocket propellant are preferred in military applications because they can be stored for a long time and are ready to fire at any time. In this study, the effects of the initial temperature and ambient pressure of the composite rocket propellant on the burning rate were investigated. The combustion temperature of the sample was determined with a closed bomb calorimeter. Burning rate was determined at 241, 294 and 343 K ambient temperatures and using a strand burner device. Burning rate of composite rocket propellant increased with increasing ambient pressure. It was determined that the burning rate increased with the increase in the initial temperature of the combustion chamber.

References

  • Atwood, A. I., Boggs, T. L., Curran, P. O., Parr, T. P., Hanson-Parr, D. M., Price, C. F., & Wiknich, J. (1999). Burning rate of solid propellant ingredients, part 1: Pressure and initial temperature effects, Journal of Propulsion and Power, 15 (6), 740-747.
  • Bae, S. B., Kim, C. K., Kim, K., & Chung, I. J. (2008). The effect of organic modifiers with different chain lengths on the dispersion of clay layers in HTPB (hydroxyl terminated polybutadiene), European Polymer Journal, 44, 3385–3392.
  • Bastress, E. K. (1961). Modification of the burning rates of ammonium perchlorate solid propellants by particle size control. Princeton University.
  • Bossi, I., Ferriello, P., & De Luca, L. (2001). Acoustic emission of underwater burning composite solid rocket propellants. In XVI Congresso Nazionale AIDAA, 2001, 24-28 September, Palermo, Pa, Italy (Vol. 12).
  • Cohen, N. S., & Strand, L. D. (1982). An improved model for the combustion of AP composite propellants, AIAA journal, 20 (12), 1739-1746.
  • Dokhan, A., Price, E.W., Sigmant, R.K., & Seitzman, J. M. (2001). The Effects of Al Particle Size on the Burning Rate and Residual Oxide in Aluminized Propellents. 37th AIAA/ASME/SAE/ASEE Joint Prooulsion Conference and Exhibit.
  • Dönmez, C.E. (2018). Kompozit esaslı katı roket yakıt numunesinin karaktersitik özelliklerinin deneysel incelenmesi, Yüksek lisans tezi, Kırıkkale Üniversitesi. Kirikkale, Turkiye.
  • Ghorpade, V.G., Dey, A., Jawale, L.S., Kotbagi, A.M., Kumar A., & Gupta, M. (2010). Study of Burn Rate Suppressants in AP-Based Composite Propellants. Propellants Explos. Pyrotech., 35, 53 – 56
  • Jain, S., Gupta, G., Kshirsagar, D.R., Khire, V.H., & Kandasubramanian, B. (2019). Burning rate and other characteristics of strontium titanate (SrTiO3) supplemented AP/HTPB/Al composite propellants. Defence technology 15, 313 – 318.
  • Jayaraman, K. V. A. K., Anand, K. V., Chakravarthy, S. R., & Sarathi, R. (2009). Effect of nano-aluminium in plateau-burning and catalyzed composite solid propellant combustion. Combustion and Flame, 156(8), 1662-1673.
  • Kshirsagar, D.R., Jain, S., Jawalkar, S.N., Naik, N.H., Pawar, S., & Maurya, M. (2016). Evaluation of Nano-Co3O4 in HTPB-Based Composite Propellant Formulations. Propellants Explos. Pyrotech., 41, 304 – 311
  • Kubota, N. (2002). Propellants and Explosives Thermochemical aspects of Combustion. Wiley, Germany.
  • Lu, K.T., Yang, T.M., Li, J.S., & Yeh, T.F. (2012). Study on the burning characterıstics of ap/al/htpb composite solid propellant containing nano-sized ferric oxide powder. Combust. Sci. Technol., 184, 2100–2116,
  • MIL–STD–286C (1991). Military Standard Propellants, Solid, Sampling, Examination and Testing. Department of Defense, USA.
  • Park, S. J., Choi, S. H., & Park, J. H. (2021). Properties of Composite Solid Propellants Containing α‐FeOOH. Propellants, Explosives, Pyrotechnics, 46 (1), 84-89.
  • Shioya, S., Kohga, M., & Naya, T. (2014). Burning characteristics of ammonium perchlorate-based composite propellant supplemented with diatomaceous earth. Combustion and Flame, 161, 620-630.
  • Spurling, A. (2013). Effects of initial bulk temperatures on a propellant's pressure-coupled response, International Journal of Energetic Materials and Chemical Propulsion, 12 (5).
  • Styborski, J.A., Scorza, M.J., Smith, M.N., & Oehlschlaeger, M.A. (2010). Iron Nanoparticle Additives as Burning Rate Enhancers in AP/HTPB Composite Propellants. Propellants Explos. Pyrotech., 35, 1 – 8
  • Sutton G.P., & Biblarz, O. (2017). Rocket Propulsion Elements, Wiley, Canada.
  • Trache, D., Maggi, F., Palmucci, I., DeLuca, L.T., Khimeche, K., Fassina, M., Dossi, S., & Colombo, G. (2019). Effect of amide-based compounds on the combustion characteristics of composite solid rocket propellants. Arabian Journal of Chemistry, 12, 3639-3651.
  • Varghese, T.L., & Krishnamurthy, V.N. (2017). The Chemistry and Technology of Solid Rocket Propellants (A Treatise, Allied publishers PVT LTD.
  • Yaman, H., Çelik, V., & Degirmenci, E. (2014). Experimental investigation of the factors affecting the burning rate of solid rocket propellants. Fuel, 115, 794–803.
  • Zhang, W., Xie, W. X., Fan, X. Z., Liu, F. L., Pang, W. Q., Yan, N., & Liu, Q. (2014). Effects of nano-aluminum on combustion characteristic of low smoke NEPE propellants. J. Solid Rocket Technol, 37, 516-520.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Salih Uğur Bayça 0000-0001-5805-4966

Murat Demir 0000-0003-3365-1064

Early Pub Date July 7, 2023
Publication Date July 14, 2023
Submission Date December 6, 2022
Published in Issue Year 2023 Volume: 15 Issue: 2

Cite

APA Bayça, S. U., & Demir, M. (2023). Kompozit Roket Yakıtının Yanma Hızı Üzerine Ortam Basıncının ve Başlangıç Sıcaklığının Etkileri. International Journal of Engineering Research and Development, 15(2), 371-377. https://doi.org/10.29137/umagd.1213570

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.