Research Article
BibTex RIS Cite

Graphene Oxide-Reinforced Cementitious Concrete Composites That Incorporates Silica Fume And Fly Ash

Year 2023, Volume: 15 Issue: 2, 526 - 534, 14.07.2023
https://doi.org/10.29137/umagd.1258578

Abstract

In recent years, nano-sized graphene oxide (GO) has come to the fore as a promising material for enhancing the mechanical and durability performance of cementitious composites. On the other hand, partial substitution of industrial wastes and by-products into cementitious composites attracts the attention of researchers in order to ensure long-term sustainability. In order to combine these two aspects, the main focus of this study is to examine the effect of 0.05% and 0.1% GO-reinforcement on the slump, 7 and 28-day compressive and flexural strength and 28-day rapid chloride permeability test (RCPT) properties of cementitious composites. In this context, mixtures with three different binder combinations, a control, a silica fume (SF) substitution, and a fly ash (FA) substitution, were designed. The results showed that GO-reinforcement reduced the slump values of the mixtures between 5-15 mm, while the 28-day compressive strengths increased in the range of 9.82%-13.61% with 0.05% GO-reinforcement, and in the range of 17.02%-20.68% with 0.1% GO-reinforcement. The 28-day flexural strength of the mixtures increased by about 10% on average as a result of 0.1% GO-reinforcement. According to the RCPT anaylses, it was observed that the chloride permeability of the mixtures decreased up to 18.85% with 0.1% GO-reinforcement.

References

  • Al-Dahawi, A., Öztürk, O., Emami, F., Yıldırım, G., Şahmaran M. (2016). Effect of mixing methods on the electrical properties of cementitious composites incorporating different carbon-based materials. Construction and Building Materials, 104, 160-168.
  • ASTM C 39, (2005). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA.
  • ASTM C1202, (2012). Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration, ASTM International, West Conshohocken, PA.
  • ASTM C78/C78M, (2018). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third Point Loading), ASTM International, West Conshohocken, PA.
  • Azhari, F., & Banthia N. (2012). Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cement and Concrete Composites, 34, 866–873.
  • Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., ... & Stormer, H. L. (2008). Ultrahigh electron mobility in suspended graphene. Solid state communications, 146(9-10), 351-355.
  • Chaipanich, A., Nochaiya, T., Wongkeo, W., Torkittikul, P. (2010). Compressive strength and microstructure of carbon nanotubes–fly ash cement composites. Materials Science and Engineering: A, 527, 1063–1067.
  • Chakraborty, S., Kundu, S. P., Roy, A. Adhikari, B. Majumder, S. B. (2013) Effect of jute as fiber reinforcement controlling the hydration characteristics of cement matrix. Industrial & Engineering Chemistry Research, 52, 1252–1260.
  • Chandra, L., & Hardjito, D. (2015). The impact of using fly ash, silica fume and calcium carbonate on the workability and compressive strength of mortar. Procedia Engineering, 125, 773-779.
  • Chen, J., Kou, S. C., Poon, C. S. (2012) Hydration and properties of nano-TiO2 blended cement composites. Cement and Concrete Composites, 34, 642–649.
  • Chuah, S., Li, W., Chen, S. J., Sanjayan, J. G., & Duan, W. H. (2018). Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments. Construction and Building Materials, 161, 519-527.
  • Devi, S. C., & Khan, R. A. (2020). Effect of graphene oxide on mechanical and durability performance of concrete. Journal of Building Engineering, 27, 101007.
  • Ding, Y., Chen, Z., Han, Z., Zhang, Y., Pacheco-Torgal, F. (2013). Nano-carbon black and carbon fiber as conductive materials for the diagnosing of the damage of concrete beam. Construction and Building Materials, 43, 233-241.
  • Gaitero, J. J., Campillo, I., Guerrero, A. (2008). Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cement and Concrete Research, 29, 1112–1118.
  • Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature materials, 6(3), 183-191.
  • Gong, K., Pan, Z., Korayem, A. H., Qiu, L., Li, D., Collins, F., ... & Duan, W. H. (2015). Reinforcing effects of graphene oxide on portland cement paste. J. Mater. Civ. Eng, 27(2), A4014010.
  • Hou, P., Qian, J., Cheng, X., Shah, S. P. (2015). Effects of the pozzolanic reactivity of nanoSiO2 on cement-based materials. Cement and Concrete Composites, 55, 250–258.
  • Imam, A., Kumar, V., & Srivastava, V. (2018). Review study towards effect of Silica Fume on the fresh and hardened properties of concrete. Advances in concrete construction, 6(2), 145.
  • Jiang, Z., Sevim, O., Ozbulut, O. E. (2021). Mechanical properties of graphene nanoplatelets-reinforced concrete prepared with different dispersion techniques. Construction and Building Materials, 303, 124472.
  • Jo, B. W., Kim, C. H., Tae, G., Park, J. B. (2007). Characteristics of cement mortar with nano-SiO2 particles. Construction and Building Materials, 21, 1351-1355.
  • Kawashima, S., Hou, P., Corr, D. J., Shah, S. P. (2013) Modification of cement-based materials with nanoparticles. Cement and Concrete Composites, 36, 8–15.
  • Kawashima, S., Seo, J. W. T., Corr, D., Hersam, M. C., Shah, S.P. (2014). Dispersion of CaCO3 nanoparticles by sonication and surfactant treatment for application in fly ash-cement systems. Materials and Structures, 47, 1011–1023.
  • Konsta-Gdoutos, M. S., & Aza C. A. (2014). Self-sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cement and Concrete Composites, 53, 162–169.
  • Konsta-Gdoutos, M. S., Metaxa, Z. S., Shah, S. P. (2010). Highly dispersed carbon nanotube reinforced cement based materials. Cement and Concrete Research, 40, 1052-1059.
  • Kostarelos, K., & Novoselov, K. S. (2014). Exploring the interface of graphene and biology. Science, 344(6181), 261 263.
  • Krishnan, P., Zhang, M. H., Yu, L., Feng, H. (2013). Photocatalytic degradation of particulate pollutants and self cleaning performance of TiO2-containing silicate coating and mortar. Construction and Building Materials, 44, 309–316.
  • Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 321(5887), 385-388.
  • Li, H., Xiao, H., Guan, X., Wang, Z.,Yu L. (2014). Chloride diffusion in concrete containing nano-TiO2 under coupled effect of scouring. Composites Part B: Engineering, 56, 698–704.
  • Li, X., Liu, Y. M., Li, W. G., Li, C. Y., Sanjayan, J. G., Duan, W. H., & Li, Z. (2017). Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste. Construction and Building Materials, 145, 402-410.
  • Lu, J., Do, I., Drzal, L. T., Worden, R. M., Lee, I. (2008). Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS nano, 2(9), 1825-1832.
  • Lv, S., Ma, Y., Qiu, C., Sun, T., Liu, J., & Zhou, Q. (2013). Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Construction and building materials, 49, 121-127.
  • Lv, S., Ma, Y., Qiu, C., Sun, T., Liu, J., & Zhou, Q. (2013). Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Construction and building materials, 49, 121-127.
  • Mehta, P. K. (2001). Reducing the environmental impact of concrete. Concrete International, (10), 61–66.
  • Mehta, P. K., Monteiro, P. J. M., (2006). Concrete Microstructure, Properties, and Materials (3rd ed.). New York, McGraw-Hill.
  • Metaxa, Z. S., Seo, J. W. T., Konsta-Gdoutos, M. S., Hersam, M. C., Shah, S. P. (2012). Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials. Cement and Concrete Composites, 34, 612–615.
  • Mindess, S., Young, J. F., Darwin, D. (2003). Concrete (2nd ed.). New Jersey, Prentice Hall.
  • Morozov, S. V., Novoselov, K. S., Katsnelson, M. I., Schedin, F., Elias, D. C., Jaszczak, J. A., & Geim, A. K. (2008). Giant intrinsic carrier mobilities in graphene and its bilayer. Physical review letters, 100(1), 016602.
  • Nemkumar, B., & Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement and Concrete Research, 36(7), 1263-1267.
  • Neville, A. M. (1995). Properties of Concrete (4th ed.). London, Prentice Hall
  • Ozbulut, O. E., Jiang, Z., & Harris, D. K. (2018). Exploring scalable fabrication of self-sensing cementitious composites with graphene nanoplatelets. Smart Materials and Structures, 27(11), 115029.
  • Pan, Z., He, L., Qiu, L., Korayem, A. H., Li, G., Zhu, J. W., ... & Wang, M. C. (2015). Mechanical properties and microstructure of a graphene oxide–cement composite. Cement and Concrete Composites, 58, 140-147.
  • Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature nanotechnology, 4(4), 217-224.
  • Quercia, G., Spiesz, P., Husken, G., Brouwers, H. J. H. (2014). SCC modification by use of amorphous nano-silica, Cement and Concrete Composites, 45, 69–81.
  • Rezania, M., Panahandeh, M., Razavi, S. M. J., Berto, F. (2019). Experimental study of the simultaneous effect of nano-silica and nano-carbon black on permeability and mechanical properties of the concrete. Theoretical and Applied Fracture Mechanics, 104, 102391.
  • Sahmaran, M., Li, M., Li, V. C. (2007). Transport properties of engineered cementitious composites under chloride exposure. ACI Materials Journal, 104, 604-611.
  • Sahmaran, M., Li, M., Li, V. C. (2009). Durability properties of micro-cracked ECC containing high volumes fly ash. Cement and Concrete Research, (11), 1033-1043.
  • Sahmaran, M., Yildirim, G., Erdem, T. K. (2013). Self-healing capability of cementitious composites incorporating different supplementary cementitious materials. Cement and Concrete Composites, 35(1), 89-101.
  • Shahriary, L., & Athawale, A. A. (2014). Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng, 2(01), 58-63.
  • Shaikuthali, S. A., Mannan, M. A., Dawood, E. T., Teo, D. C. L., Ahmadi, R., & Ismail, I. (2019). Workability and compressive strength properties of normal weight concrete using high dosage of fly ash as cement replacement. Journal of Building Pathology and Rehabilitation, 4(1), 1-7.
  • Shanmuga Priya, T., Mehra, A., Jain, S., & Kakria, K. (2021). Effect of graphene oxide on high-strength concrete induced with rice husk ash: mechanical and durability performance. Innovative Infrastructure Solutions, 6(1), 1-16.
  • Sobolev, K., & Ferrada-Gutierrez, M. (2005). How nanotechnology can change the concrete world: part I. American Ceramic Society Bulletin, 84, 14–17.
  • Sobolkina, A., Mechtcherine, V., Khavrus, V., Maier, D., Mende, M., Ritschel, M., Leonhardt A. (2012). Dispersion of carbon nanotubes and its influence on the mechanical properties of cement matrix. Cement and Concrete Composites, 34, 1104–1113.
  • Stefanidou M., & Papayianni, I. (2012). Influence of nano-SiO2 on the Portland cement pastes. Composites Part B: Engineering, 43, 2706–2710.
  • Tong, T., Fan, Z., Liu, Q., Wang, S., Tan, S., & Yu, Q. (2016). Investigation of the effects of graphene and graphene oxide nanoplatelets on the micro-and macro-properties of cementitious materials. Construction and Building Materials, 106, 102-114.
  • Tyson, M., Al-Rub, R. K. A., Yazadanbakhsh, A., Graslev Z. (2011). Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials. Journal of Materials in Civil Engineering, 23, 1028–1035.
  • Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials, 22(35), 3906-3924.

Silis Dumanı ve Uçucu Kül İçeren Grafen Oksit Takviyeli Çimentolu Beton Kompozitler

Year 2023, Volume: 15 Issue: 2, 526 - 534, 14.07.2023
https://doi.org/10.29137/umagd.1258578

Abstract

Son yıllarda, nano boyutlu grafen oksit (GO), çimentolu kompozitlerin mekanik ve dayanıklılık performansını artırmak için umut verici bir malzeme olarak öne çıkmıştır. Öte yandan, endüstriyel atıkların ve yan ürünlerin kısmi olarak çimentolu kompozitlere ikamesi, uzun vadeli sürdürülebilirliği sağlamak için araştırmacıların ilgisini çekmektedir. Bu iki yönü birleştirmek için, bu çalışmanın ana odak noktası, %0,05 ve %0,1 GO takviyesinin slump, 7 ve 28 günlük basınç ve eğilme dayanımı ve 28 günlük hızlı klorür geçirgenliği testi üzerindeki etkisini incelemektir. Bu bağlamda, kontrol, silis dumanı (SF) ikamesi ve uçucu kül (FA) ikamesi olmak üzere üç farklı bağlayıcı kombinasyonuna sahip karışımlar tasarlanmıştır. Sonuçlar, GO-takviyesinin karışımların slamp değerlerini 5-15 mm arasında azalttığını, 28 günlük basınç dayanımlarını ise %0,05 GO takviyesi ile %9,82-%13,61 aralığında, %0,1 GO takviyesi ile %17,02-%20,68 aralığında arttığını göstermiştir. Karışımların 28 günlük eğilme mukavemeti, %0,1 GO takviyesi sonucunda ortalama olarak yaklaşık %10 artmıştır. RCPT analizlerine göre, %0,1 GO takviyesi ile karışımların klorür geçirgenliğinin %18,85'e kadar düştüğü gözlemlenmiştir.

References

  • Al-Dahawi, A., Öztürk, O., Emami, F., Yıldırım, G., Şahmaran M. (2016). Effect of mixing methods on the electrical properties of cementitious composites incorporating different carbon-based materials. Construction and Building Materials, 104, 160-168.
  • ASTM C 39, (2005). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA.
  • ASTM C1202, (2012). Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration, ASTM International, West Conshohocken, PA.
  • ASTM C78/C78M, (2018). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third Point Loading), ASTM International, West Conshohocken, PA.
  • Azhari, F., & Banthia N. (2012). Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cement and Concrete Composites, 34, 866–873.
  • Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., ... & Stormer, H. L. (2008). Ultrahigh electron mobility in suspended graphene. Solid state communications, 146(9-10), 351-355.
  • Chaipanich, A., Nochaiya, T., Wongkeo, W., Torkittikul, P. (2010). Compressive strength and microstructure of carbon nanotubes–fly ash cement composites. Materials Science and Engineering: A, 527, 1063–1067.
  • Chakraborty, S., Kundu, S. P., Roy, A. Adhikari, B. Majumder, S. B. (2013) Effect of jute as fiber reinforcement controlling the hydration characteristics of cement matrix. Industrial & Engineering Chemistry Research, 52, 1252–1260.
  • Chandra, L., & Hardjito, D. (2015). The impact of using fly ash, silica fume and calcium carbonate on the workability and compressive strength of mortar. Procedia Engineering, 125, 773-779.
  • Chen, J., Kou, S. C., Poon, C. S. (2012) Hydration and properties of nano-TiO2 blended cement composites. Cement and Concrete Composites, 34, 642–649.
  • Chuah, S., Li, W., Chen, S. J., Sanjayan, J. G., & Duan, W. H. (2018). Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments. Construction and Building Materials, 161, 519-527.
  • Devi, S. C., & Khan, R. A. (2020). Effect of graphene oxide on mechanical and durability performance of concrete. Journal of Building Engineering, 27, 101007.
  • Ding, Y., Chen, Z., Han, Z., Zhang, Y., Pacheco-Torgal, F. (2013). Nano-carbon black and carbon fiber as conductive materials for the diagnosing of the damage of concrete beam. Construction and Building Materials, 43, 233-241.
  • Gaitero, J. J., Campillo, I., Guerrero, A. (2008). Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cement and Concrete Research, 29, 1112–1118.
  • Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature materials, 6(3), 183-191.
  • Gong, K., Pan, Z., Korayem, A. H., Qiu, L., Li, D., Collins, F., ... & Duan, W. H. (2015). Reinforcing effects of graphene oxide on portland cement paste. J. Mater. Civ. Eng, 27(2), A4014010.
  • Hou, P., Qian, J., Cheng, X., Shah, S. P. (2015). Effects of the pozzolanic reactivity of nanoSiO2 on cement-based materials. Cement and Concrete Composites, 55, 250–258.
  • Imam, A., Kumar, V., & Srivastava, V. (2018). Review study towards effect of Silica Fume on the fresh and hardened properties of concrete. Advances in concrete construction, 6(2), 145.
  • Jiang, Z., Sevim, O., Ozbulut, O. E. (2021). Mechanical properties of graphene nanoplatelets-reinforced concrete prepared with different dispersion techniques. Construction and Building Materials, 303, 124472.
  • Jo, B. W., Kim, C. H., Tae, G., Park, J. B. (2007). Characteristics of cement mortar with nano-SiO2 particles. Construction and Building Materials, 21, 1351-1355.
  • Kawashima, S., Hou, P., Corr, D. J., Shah, S. P. (2013) Modification of cement-based materials with nanoparticles. Cement and Concrete Composites, 36, 8–15.
  • Kawashima, S., Seo, J. W. T., Corr, D., Hersam, M. C., Shah, S.P. (2014). Dispersion of CaCO3 nanoparticles by sonication and surfactant treatment for application in fly ash-cement systems. Materials and Structures, 47, 1011–1023.
  • Konsta-Gdoutos, M. S., & Aza C. A. (2014). Self-sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cement and Concrete Composites, 53, 162–169.
  • Konsta-Gdoutos, M. S., Metaxa, Z. S., Shah, S. P. (2010). Highly dispersed carbon nanotube reinforced cement based materials. Cement and Concrete Research, 40, 1052-1059.
  • Kostarelos, K., & Novoselov, K. S. (2014). Exploring the interface of graphene and biology. Science, 344(6181), 261 263.
  • Krishnan, P., Zhang, M. H., Yu, L., Feng, H. (2013). Photocatalytic degradation of particulate pollutants and self cleaning performance of TiO2-containing silicate coating and mortar. Construction and Building Materials, 44, 309–316.
  • Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 321(5887), 385-388.
  • Li, H., Xiao, H., Guan, X., Wang, Z.,Yu L. (2014). Chloride diffusion in concrete containing nano-TiO2 under coupled effect of scouring. Composites Part B: Engineering, 56, 698–704.
  • Li, X., Liu, Y. M., Li, W. G., Li, C. Y., Sanjayan, J. G., Duan, W. H., & Li, Z. (2017). Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste. Construction and Building Materials, 145, 402-410.
  • Lu, J., Do, I., Drzal, L. T., Worden, R. M., Lee, I. (2008). Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS nano, 2(9), 1825-1832.
  • Lv, S., Ma, Y., Qiu, C., Sun, T., Liu, J., & Zhou, Q. (2013). Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Construction and building materials, 49, 121-127.
  • Lv, S., Ma, Y., Qiu, C., Sun, T., Liu, J., & Zhou, Q. (2013). Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Construction and building materials, 49, 121-127.
  • Mehta, P. K. (2001). Reducing the environmental impact of concrete. Concrete International, (10), 61–66.
  • Mehta, P. K., Monteiro, P. J. M., (2006). Concrete Microstructure, Properties, and Materials (3rd ed.). New York, McGraw-Hill.
  • Metaxa, Z. S., Seo, J. W. T., Konsta-Gdoutos, M. S., Hersam, M. C., Shah, S. P. (2012). Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials. Cement and Concrete Composites, 34, 612–615.
  • Mindess, S., Young, J. F., Darwin, D. (2003). Concrete (2nd ed.). New Jersey, Prentice Hall.
  • Morozov, S. V., Novoselov, K. S., Katsnelson, M. I., Schedin, F., Elias, D. C., Jaszczak, J. A., & Geim, A. K. (2008). Giant intrinsic carrier mobilities in graphene and its bilayer. Physical review letters, 100(1), 016602.
  • Nemkumar, B., & Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement and Concrete Research, 36(7), 1263-1267.
  • Neville, A. M. (1995). Properties of Concrete (4th ed.). London, Prentice Hall
  • Ozbulut, O. E., Jiang, Z., & Harris, D. K. (2018). Exploring scalable fabrication of self-sensing cementitious composites with graphene nanoplatelets. Smart Materials and Structures, 27(11), 115029.
  • Pan, Z., He, L., Qiu, L., Korayem, A. H., Li, G., Zhu, J. W., ... & Wang, M. C. (2015). Mechanical properties and microstructure of a graphene oxide–cement composite. Cement and Concrete Composites, 58, 140-147.
  • Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature nanotechnology, 4(4), 217-224.
  • Quercia, G., Spiesz, P., Husken, G., Brouwers, H. J. H. (2014). SCC modification by use of amorphous nano-silica, Cement and Concrete Composites, 45, 69–81.
  • Rezania, M., Panahandeh, M., Razavi, S. M. J., Berto, F. (2019). Experimental study of the simultaneous effect of nano-silica and nano-carbon black on permeability and mechanical properties of the concrete. Theoretical and Applied Fracture Mechanics, 104, 102391.
  • Sahmaran, M., Li, M., Li, V. C. (2007). Transport properties of engineered cementitious composites under chloride exposure. ACI Materials Journal, 104, 604-611.
  • Sahmaran, M., Li, M., Li, V. C. (2009). Durability properties of micro-cracked ECC containing high volumes fly ash. Cement and Concrete Research, (11), 1033-1043.
  • Sahmaran, M., Yildirim, G., Erdem, T. K. (2013). Self-healing capability of cementitious composites incorporating different supplementary cementitious materials. Cement and Concrete Composites, 35(1), 89-101.
  • Shahriary, L., & Athawale, A. A. (2014). Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng, 2(01), 58-63.
  • Shaikuthali, S. A., Mannan, M. A., Dawood, E. T., Teo, D. C. L., Ahmadi, R., & Ismail, I. (2019). Workability and compressive strength properties of normal weight concrete using high dosage of fly ash as cement replacement. Journal of Building Pathology and Rehabilitation, 4(1), 1-7.
  • Shanmuga Priya, T., Mehra, A., Jain, S., & Kakria, K. (2021). Effect of graphene oxide on high-strength concrete induced with rice husk ash: mechanical and durability performance. Innovative Infrastructure Solutions, 6(1), 1-16.
  • Sobolev, K., & Ferrada-Gutierrez, M. (2005). How nanotechnology can change the concrete world: part I. American Ceramic Society Bulletin, 84, 14–17.
  • Sobolkina, A., Mechtcherine, V., Khavrus, V., Maier, D., Mende, M., Ritschel, M., Leonhardt A. (2012). Dispersion of carbon nanotubes and its influence on the mechanical properties of cement matrix. Cement and Concrete Composites, 34, 1104–1113.
  • Stefanidou M., & Papayianni, I. (2012). Influence of nano-SiO2 on the Portland cement pastes. Composites Part B: Engineering, 43, 2706–2710.
  • Tong, T., Fan, Z., Liu, Q., Wang, S., Tan, S., & Yu, Q. (2016). Investigation of the effects of graphene and graphene oxide nanoplatelets on the micro-and macro-properties of cementitious materials. Construction and Building Materials, 106, 102-114.
  • Tyson, M., Al-Rub, R. K. A., Yazadanbakhsh, A., Graslev Z. (2011). Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials. Journal of Materials in Civil Engineering, 23, 1028–1035.
  • Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials, 22(35), 3906-3924.
There are 56 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Articles
Authors

İsmail Raci Bayer 0000-0003-0827-9168

Early Pub Date July 7, 2023
Publication Date July 14, 2023
Submission Date March 1, 2023
Published in Issue Year 2023 Volume: 15 Issue: 2

Cite

APA Bayer, İ. R. (2023). Graphene Oxide-Reinforced Cementitious Concrete Composites That Incorporates Silica Fume And Fly Ash. International Journal of Engineering Research and Development, 15(2), 526-534. https://doi.org/10.29137/umagd.1258578

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.