Research Article
BibTex RIS Cite

Yumuşak Doku Onarımı için Poli(l-laktid-ko-kaprolakton) Biyobozunur Cerrahi Yamaların 3B Baskısı ve Jelatin Kaplanması

Year 2023, Volume: 15 Issue: 2, 860 - 871, 14.07.2023
https://doi.org/10.29137/umagd.1285188

Abstract

Yumuşak doku defektleri, kas veya bağ dokusunun zayıflaması veya bozulması nedeniyle oluşur. En sık görülen yumuşak doku hasarları arasında yer alan fıtıkların onarımında, çoğunlukla dokuyu desteklemek ve iyileşme sürecini kolaylaştırmak için, defekt bölgesine sentetik bir cerrahi yama yerleştirilir. Şimdiye kadar, mekanik performansı dokuyu desteklemeye yeterli olan, optimum doku rejenerasyonu sağlayan ve postoperatif komplikasyonları en aza indirgeyen bir cerrahi yama mevcut olmadığı için ideal malzeme ve teknik kombinasyonu arayışları devam etmektedir. Bu çalışmada, üç boyutlu (3B) basılmış makro gözenekli poli(l-laktid-ko-kaprolakton) (PLCL) ile bir mesh üretilerek, biyouyumluluğun artırılması amacıyla yüzeyi jelatin (Jel) ile kaplanmıştır. Elde edilen PLCL/Jel yamanın PLCL katmanındaki gözenek boyutunun 661,7±30,6 μm olduğu tespit edilmiştir. Yüzeyde homojen yayılmış hidrofilik karakterdeki jelatin kaplamanın su ile yüzey temas açısı 58,5±3,0° olarak kaydedilmiştir. PLCL/Jel yamaların temas açısı ise 60,5±8,8° olarak ölçülmüştür. In vitro biyobozunma deneylerinde, jelatin kaplamanın hidrolitik bozunmasının başladığı gösterilmiştir; ancak sentetik polimerin nispeten daha yavaş bozunmasına bağlı olarak, PLCL/Jel yamanın başlangıç ağırlığının %93,68±3,18'ini koruğu belirlenmiştir. Yalnız PLCL’den üretilen meshlere göre, PLCL/Jel yamanın çekme gerilimi (σM) önemli oranda artarak 6,45±1,20 MPa’a çıkmıştır ve çekme gerinimi (εM) %10,47±7,41 düzeyine inmiştir. Bu değerler, PLCL/Jel yamanın karın duvarında meydana gelen fıtıkların onarımında değerlendirilmek üzere optimum mekanik özellikler sergilediğini işaret etmektedir.

Thanks

3B baskı ile yama üretimi, SEM, FTIR-ATR, yüzey temas açısı, in vitro biyobozunma deneyleri yazarın bağlı olduğu Sağlık Bilimleri Üniversitesi (SBÜ) Deneysel Tıp Uygulama ve Araştırma Merkezi (DETUAM) altyapısı kullanılarak gerçekleştirilmiştir. Mekanik testler ise Orta Doğu Teknik Üniversitesi (ODTÜ) Merkezi Laboratuvar’da yapılmıştır.

References

  • Allergan Aesthetics. (2023). STRATTICETM Reconstructive Tissue Matrix (RTM). Erişim tarihi: 20 Mayıs 2023, https://hcp.stratticetissuematrix.com/en/products
  • Aube, C., Pessaux, P., Tuech, J. J., Du Plessis, R., Becker, P., Caron, C., & Arnaud, J. P. (2004). Detection of peritoneal adhesions using ultrasound examination for the evaluation of an innovative intraperitoneal mesh. Surgical Endoscopy and Other Interventional Techniques, 18, 131-135. doi: 10.1007/s00464-003-9056-2
  • Baheiraei, N., Gharibi, R., Yeganeh, H., Miragoli, M., Salvarani, N., Di Pasquale, E., & Condorelli, G. (2016). Electroactive polyurethane/siloxane derived from castor oil as a versatile cardiac patch, part I: Synthesis, characterization, and myoblast proliferation and differentiation. Journal of Biomedical Materials Research Part A, 104(3), 775-787. doi:10.1002/jbm.a.35612
  • Baylón, K., Rodríguez-Camarillo, P., Elías-Zúñiga, A., Díaz-Elizondo, J., Gilkerson, R., & Lozano, K. (2017). Past, present and future of surgical meshes: A review. Membranes, 7(3), 47. doi: 10.3390/membranes7030047
  • Bilsel, Y., & Abci, I. (2012). The search for ideal hernia repair; mesh materials and types. International Journal of Surgery, 10(6), 317-321. doi: 10.1016/j.ijsu.2012.05.002
  • Bottino, M. C., Thomas, V., & Janowski, G. M. (2011). A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration. Acta Biomaterialia, 7(1), 216-224. doi: 10.1016/j.actbio.2010.08.019
  • Deeken, C. R., & Lake, S. P. (2017). Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair. Journal of the Mechanical Behavior of Biomedical Materials, 74, 411-427. doi: 10.1016/j.jmbbm.2017.05.008
  • Erdem, R., Yavuz, E., Akarsu, E., Akarsu, M., Yılmaz, Ö. E., & Coşgun, A. (2023). Electrospinning of antibacterial scaffolds composed of poly (L-lactide-co-ε-caprolactone)/collagen type I/silver doped hydroxyapatite particles: Potential material for bone tissue engineering. The Journal of The Textile Institute, 114(3), 441-454. doi: 10.1080/00405000.2022.2046305.
  • Fatkhudinov, T., Tsedik, L., Arutyunyan, I., Lokhonina, A., Makarov, A., Korshunov, A., Elchaninov, A., Kananykhina, E., Vasyukova, O., Usman, N., Uvarova, E., Chuprynin, V., Eremina I., Degtyarev, D., & Sukhikh, G. (2019). Evaluation of resorbable polydioxanone and polyglycolic acid meshes in a rat model of ventral hernia repair. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107(3), 652-663. doi:10.1002/jbm.b.34158
  • GORE Medical. (2023). BIO-A® Tissue Reinforcement. Erişim tarihi: 20 Mayıs 2023, https://www.goremedical.com/products/bioatissue
  • Herrera-Kao, W. A., Loría-Bastarrachea, M. I., Pérez-Padilla, Y., Cauich-Rodríguez, J. V., Vázquez-Torres, H., & Cervantes-Uc, J. M. (2018). Thermal degradation of poly (caprolactone), poly (lactic acid), and poly (hydroxybutyrate) studied by TGA/FTIR and other analytical techniques. Polymer Bulletin, 75, 4191-4205. doi:10.1007/s00289-017-2260-3
  • Hey, K., Lachs, C., Raxworthy, M., & Wood, E. (1990). Crosslinked fibrous collagen for use as a dermal implant: Control of the cytotoxic effects of glutaraldehyde and dimethylsuberimidate. Biotechnology and Applied Biochemistry, (12), 85-93. doi: 10.1111/j.1470-8744.1990.tb00082.x
  • Hollinsky, C., & Sandberg, S. (2007). Measurement of the tensile strength of the ventral abdominal wall in comparison with scar tissue. Clinical Biomechanics, 22(1), 88-92. doi: 10.1016/j.clinbiomech.2006.06.002
  • Hu, Q., Wu, J., Zhang, H., Dong, W., Gu, Y., & Liu, S. (2022). Designing Double‐Layer Multimaterial Composite Patch Scaffold with Adhesion Resistance for Hernia Repair. Macromolecular Bioscience, 22(6), 2100510. doi: 10.1002/mabi.202100510
  • Kim, S. I., Lim, J. I., Jung, Y., Mun, C. H., Kim, J. H., & Kim, S. H. (2013). Preparation of enhanced hydrophobic poly(l-lactide-co-ε-caprolactone) films surface and its blood compatibility. Applied Surface Science, 276, 586-591. doi: 10.1016/j.apsusc.2013.03.137
  • Klosterhalfen, B., Junge, K., & Klinge, U. (2005). The lightweight and large porous mesh concept for hernia repair. Expert Review of Medical Devices, 2(1), 103-117. doi: 10.1586/17434440.2.1.103
  • Liu, S., Zhang, H., Hu, Q., Zhang, C., Li, S., & Wang, B. (2020). A facile strategy for fabricating composite patch scaffold by using porcine acellular dermal matrix and gelatin for the reconstruction of abdominal wall defects. Journal of Biomaterials Applications, 34(10), 1479-1493. doi: 10.1177/0885328220910557
  • Liu, X., Liu, S., Li, K., Fan, Y., Feng, S., Peng, L., Zhang, T., Wang, X., Chen, D., Xiong, C., Bai, W., & Zhang, L. (2021). Preparation and property evaluation of biodegradable elastomeric PTMC/PLCL networks used as ureteral stents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 630, 127550. doi: 10.1016/j.colsurfa.2021.127550
  • Liu, T., Ye, Z., Yu, B., Xuan, W., Kang, J., & Chen, J. (2023). Biomechanical behaviors and visco-hyperelastic mechanical properties of human hernia patches with polypropylene mesh. Mechanics of Materials, 176, 104529. doi: 10.1016/j.mechmat.2022.104529
  • Łopusiewicz, Ł., Jędra, F., & Bartkowiak, A. (2018). New active packaging films made from gelatin modified with fungal melanin. World Scientific News, 101, 1-30.
  • Mallamace, F., Corsaro, C., Mallamace, D., Vasi, S., Vasi, C., & Dugo, G. (2015). The role of water in protein’s behavior: The two dynamical crossovers studied by NMR and FTIR techniques. Computational and Structural Biotechnology Journal, 13, 33-37. doi: 10.1016/j.csbj.2014.11.007
  • Medtronic. (2023-a). PhasixTM Mesh. Erişim tarihi: 20 Mayıs 2023, https://www.bd.com/en-us/products-and-solutions/products/product-families/phasix-mesh,
  • Medtronic. (2023-b). ParietexTM Composite Ventral Patch. Erişim tarihi: 20 Mayıs 2023, https://www.medtronic.com/covidien/en-us/products/hernia-repair/parietex-composite-ventral-patch.html
  • Mendibil, X., Ortiz, R., Sáenz de Viteri, V., Ugartemendia, J. M., Sarasua, J. R., & Quintana, I. (2020). High throughput manufacturing of bio-resorbable micro-porous scaffolds made of poly (L-lactide-co-ε-caprolactone) by micro-extrusion for soft tissue engineering applications. Polymers, 12(1), 34. doi:10.3390/polym12010034
  • Nardo, T., Chiono, V., Gentile, P., Tabrizian, M., & Ciardelli, G. (2016). Poly (DL-lactide-co-ε-caprolactone) and poly (DL-lactide-co-glycolide) blends for biomedical application: Physical properties, cell compatibility, and in vitro degradation behavior. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(14), 741-750. doi: 10.1080/00914037.2016.1163566
  • Olmos‐Juste, R., Olza, S., Gabilondo, N., & Eceiza, A. (2022). Tailor‐made 3D printed meshes of alginate‐waterborne polyurethane as suitable ımplants for hernia repair. Macromolecular Bioscience, 22(9), 2200124. doi: 10.1002/mabi.202200124
  • Öberg, S., Andresen, K., & Rosenberg, J. (2017). Absorbable meshes in ınguinal hernia surgery: A systematic review and meta-analysis. Surgical Innovation, 24(3), 289-298. doi: 10.1177/1553350617697849
  • Pizza, F., D’Antonio, D., Arcopinto, M., Dell’Isola, C., & Marvaso, A. (2020). Safety and efficacy of prophylactic resorbable biosynthetic mesh following midline laparotomy in clean/contemned field: Preliminary results of a randomized double blind prospective trial. Hernia, 24(1), 85-92. doi: 10.1007/s10029-019-02025-4
  • Pizza, F., D’Antonio, D., Lucido, F. S., Del Rio, P., Dell’Isola, C., Brusciano, L., Tolone, S., Docimo, L., & Gambardella, C. (2022). Is absorbable mesh useful in preventing parastomal hernia after emergency surgery? The PARTHENOPE study. Hernia, 26(2), 507-516. doi: 10.1007/s10029-022-02579-w
  • Qamar, N., Abbas, N., Irfan, M., Hussain, A., Arshad, M. S., Latif, S., Mehmood, F., & Ghori, M. U. (2019). Personalized 3D printed ciprofloxacin impregnated meshes for the management of hernia. Journal of Drug Delivery Science and Technology, 53, 101164. doi: 10.1016/j.jddst.2019.101164
  • Saha, T., Houshyar, S., Sarker, S. R., Pyreddy, S., Dekiwadia, C., Nasa, Z., Padhye, R., & Wang, X. (2021). Nanodiamond‐chitosan functionalized hernia mesh for biocompatibility and antimicrobial activity. Journal of Biomedical Materials Research Part A, 109(12), 2449-2461. doi: 10.1002/jbm.a.37237
  • Saha, T., Wang, X., Padhye, R., & Houshyar, S. (2022). A review of recent developments of polypropylene surgical mesh for hernia repair. OpenNano, 7, 100046. doi: 10.1016/j.onano.2022.100046
  • Sanbhal, N., Saitaer, X., Peerzada, M., Habboush, A., Wang, F., & Wang, L. (2019). One-Step Surface Functionalized Hydrophilic Polypropylene Meshes for Hernia Repair Using Bio-Inspired Polydopamine. Fibers, 7(1), 6. doi: 10.3390/fib7010006
  • Shin, C. S., Cabrera, F. J., Lee, R., Kim, J., Ammassam Veettil, R., Zaheer, M., Adumbumkulath, A., Mhatre, K., Ajayan, P. M., Curley, S. A., Scott, B. G., & Acharya, G. (2021). 3D‐bioprinted inflammation modulating polymer scaffolds for soft tissue repair. Advanced Materials, 33(4), 2003778. doi: 10.1002/adma.202003778
  • Song, Z., Yang, D., Hu, Q., Wang, Y., Zhang, H., Dong, W., Yang, J., & Gu, Y. (2023). Reconstruction of Abdominal Wall Defect with Composite Scaffold of 3D Printed ADM/PLA in a Rat Model. Macromolecular Bioscience, 2200521. doi: 10.1002/mabi.202200521
  • Taylor, D. (2018). The failure of polypropylene surgical mesh in vivo. Journal of the Mechanical Behavior of Biomedical Materials, 88, 370-376. doi: 10.1016/j.jmbbm.2018.08.041
  • Ulrich, D., Edwards, S. L., White, J. F., Supit, T., Ramshaw, J. A. M., Lo, C., Rosamilla, A., Werkmeister, J. A., & Gargett, C. E. (2012). A preclinical evaluation of alternative synthetic biomaterials for fascial defect repair using a rat abdominal hernia model. PLoS ONE, 7(11), e50044. doi: 10.1371/journal.pone.0050044
  • Wang See, C., Kim, T., & Zhu, D. (2020). Hernia mesh and hernia repair: A review. Engineered Regeneration, 1, 19-33. doi: 10.1016/j.engreg.2020.05.002
  • Wolf, M. T., Carruthers, C. A., Dearth, C. L., Crapo, P. M., Huber, A., Burnsed, O. A., Londono, R., Johnson, S. A., Daly, K. A., Stahl, E. C., Freund, J. M., Medberry, C. J., Carey, L. E., Nieponice, A., Amoroso, N. J., Badylak, S. F. (2014). Polypropylene surgical mesh coated with extracellular matrix mitigates the host foreign body response: Polypropylene surgical mesh coated with ECM. Journal of Biomedical Materials Research Part A, 102(1), 234-246. doi: 10.1002/jbm.a.34671
  • Yuan, M., Hu, M., Dai, F., Fan, Y., Deng, Z., Deng, H., & Cheng, Y. (2021). Application of synthetic and natural polymers in surgical mesh for pelvic floor reconstruction. Materials & Design, 209, 109984. doi: 10.1016/j.matdes.2021.109984

3D Printing and Gelatin Coating of Poly(l-lactide-co-caprolactone) Biodegradable Surgical Meshes for Soft Tissue Repair

Year 2023, Volume: 15 Issue: 2, 860 - 871, 14.07.2023
https://doi.org/10.29137/umagd.1285188

Abstract

Soft tissue defects occur due to the weakening and deterioration of muscle or connective tissues. In the repair of hernias, one of the most common types of soft tissue damage, a synthetic surgical mesh is implanted into the defect area, often to support the tissue and facilitate the healing process. Since there is no surgical mesh that has the sufficient mechanical performance to support the tissue and minimizes postoperative complications while ensuring optimal tissue regeneration, the search for the ideal combination of materials and techniques continues. In this study, a macroporous poly(l-lactide-co-caprolactone) (PLCL) mesh was 3D printed and its surface was coated with gelatin (Gel) to increase biocompatibility. It was determined that the pore size of the PLCL layer in the PLCL/Gel patch was 661.7±30.6 μm. The water contact angle of the homogeneously spread hydrophilic gelatin coating on the surface was recorded as 58.5±3.0°. The contact angle of PLCL/Gel patches was measured as 60.5±8.8°. In vitro biodegradation experiments have shown that hydrolytic degradation of the gelatin coating begins; however, due to the relatively slow degradation of the synthetic polymer, the PLCL/Gel patch retained 93.68±3.18% of its initial weight. Compared to pure PLCL meshes, the tensile strength (σM) of the PLCL/Gel was increased considerably to 6.45±1.20 MPa, and the tensile strain (εM) was reduced to 10.47±7.41. These values indicate that the PLCL/Gel patch exhibits optimum mechanical properties to be exploited in the repair of abdominal wall hernias.

References

  • Allergan Aesthetics. (2023). STRATTICETM Reconstructive Tissue Matrix (RTM). Erişim tarihi: 20 Mayıs 2023, https://hcp.stratticetissuematrix.com/en/products
  • Aube, C., Pessaux, P., Tuech, J. J., Du Plessis, R., Becker, P., Caron, C., & Arnaud, J. P. (2004). Detection of peritoneal adhesions using ultrasound examination for the evaluation of an innovative intraperitoneal mesh. Surgical Endoscopy and Other Interventional Techniques, 18, 131-135. doi: 10.1007/s00464-003-9056-2
  • Baheiraei, N., Gharibi, R., Yeganeh, H., Miragoli, M., Salvarani, N., Di Pasquale, E., & Condorelli, G. (2016). Electroactive polyurethane/siloxane derived from castor oil as a versatile cardiac patch, part I: Synthesis, characterization, and myoblast proliferation and differentiation. Journal of Biomedical Materials Research Part A, 104(3), 775-787. doi:10.1002/jbm.a.35612
  • Baylón, K., Rodríguez-Camarillo, P., Elías-Zúñiga, A., Díaz-Elizondo, J., Gilkerson, R., & Lozano, K. (2017). Past, present and future of surgical meshes: A review. Membranes, 7(3), 47. doi: 10.3390/membranes7030047
  • Bilsel, Y., & Abci, I. (2012). The search for ideal hernia repair; mesh materials and types. International Journal of Surgery, 10(6), 317-321. doi: 10.1016/j.ijsu.2012.05.002
  • Bottino, M. C., Thomas, V., & Janowski, G. M. (2011). A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration. Acta Biomaterialia, 7(1), 216-224. doi: 10.1016/j.actbio.2010.08.019
  • Deeken, C. R., & Lake, S. P. (2017). Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair. Journal of the Mechanical Behavior of Biomedical Materials, 74, 411-427. doi: 10.1016/j.jmbbm.2017.05.008
  • Erdem, R., Yavuz, E., Akarsu, E., Akarsu, M., Yılmaz, Ö. E., & Coşgun, A. (2023). Electrospinning of antibacterial scaffolds composed of poly (L-lactide-co-ε-caprolactone)/collagen type I/silver doped hydroxyapatite particles: Potential material for bone tissue engineering. The Journal of The Textile Institute, 114(3), 441-454. doi: 10.1080/00405000.2022.2046305.
  • Fatkhudinov, T., Tsedik, L., Arutyunyan, I., Lokhonina, A., Makarov, A., Korshunov, A., Elchaninov, A., Kananykhina, E., Vasyukova, O., Usman, N., Uvarova, E., Chuprynin, V., Eremina I., Degtyarev, D., & Sukhikh, G. (2019). Evaluation of resorbable polydioxanone and polyglycolic acid meshes in a rat model of ventral hernia repair. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107(3), 652-663. doi:10.1002/jbm.b.34158
  • GORE Medical. (2023). BIO-A® Tissue Reinforcement. Erişim tarihi: 20 Mayıs 2023, https://www.goremedical.com/products/bioatissue
  • Herrera-Kao, W. A., Loría-Bastarrachea, M. I., Pérez-Padilla, Y., Cauich-Rodríguez, J. V., Vázquez-Torres, H., & Cervantes-Uc, J. M. (2018). Thermal degradation of poly (caprolactone), poly (lactic acid), and poly (hydroxybutyrate) studied by TGA/FTIR and other analytical techniques. Polymer Bulletin, 75, 4191-4205. doi:10.1007/s00289-017-2260-3
  • Hey, K., Lachs, C., Raxworthy, M., & Wood, E. (1990). Crosslinked fibrous collagen for use as a dermal implant: Control of the cytotoxic effects of glutaraldehyde and dimethylsuberimidate. Biotechnology and Applied Biochemistry, (12), 85-93. doi: 10.1111/j.1470-8744.1990.tb00082.x
  • Hollinsky, C., & Sandberg, S. (2007). Measurement of the tensile strength of the ventral abdominal wall in comparison with scar tissue. Clinical Biomechanics, 22(1), 88-92. doi: 10.1016/j.clinbiomech.2006.06.002
  • Hu, Q., Wu, J., Zhang, H., Dong, W., Gu, Y., & Liu, S. (2022). Designing Double‐Layer Multimaterial Composite Patch Scaffold with Adhesion Resistance for Hernia Repair. Macromolecular Bioscience, 22(6), 2100510. doi: 10.1002/mabi.202100510
  • Kim, S. I., Lim, J. I., Jung, Y., Mun, C. H., Kim, J. H., & Kim, S. H. (2013). Preparation of enhanced hydrophobic poly(l-lactide-co-ε-caprolactone) films surface and its blood compatibility. Applied Surface Science, 276, 586-591. doi: 10.1016/j.apsusc.2013.03.137
  • Klosterhalfen, B., Junge, K., & Klinge, U. (2005). The lightweight and large porous mesh concept for hernia repair. Expert Review of Medical Devices, 2(1), 103-117. doi: 10.1586/17434440.2.1.103
  • Liu, S., Zhang, H., Hu, Q., Zhang, C., Li, S., & Wang, B. (2020). A facile strategy for fabricating composite patch scaffold by using porcine acellular dermal matrix and gelatin for the reconstruction of abdominal wall defects. Journal of Biomaterials Applications, 34(10), 1479-1493. doi: 10.1177/0885328220910557
  • Liu, X., Liu, S., Li, K., Fan, Y., Feng, S., Peng, L., Zhang, T., Wang, X., Chen, D., Xiong, C., Bai, W., & Zhang, L. (2021). Preparation and property evaluation of biodegradable elastomeric PTMC/PLCL networks used as ureteral stents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 630, 127550. doi: 10.1016/j.colsurfa.2021.127550
  • Liu, T., Ye, Z., Yu, B., Xuan, W., Kang, J., & Chen, J. (2023). Biomechanical behaviors and visco-hyperelastic mechanical properties of human hernia patches with polypropylene mesh. Mechanics of Materials, 176, 104529. doi: 10.1016/j.mechmat.2022.104529
  • Łopusiewicz, Ł., Jędra, F., & Bartkowiak, A. (2018). New active packaging films made from gelatin modified with fungal melanin. World Scientific News, 101, 1-30.
  • Mallamace, F., Corsaro, C., Mallamace, D., Vasi, S., Vasi, C., & Dugo, G. (2015). The role of water in protein’s behavior: The two dynamical crossovers studied by NMR and FTIR techniques. Computational and Structural Biotechnology Journal, 13, 33-37. doi: 10.1016/j.csbj.2014.11.007
  • Medtronic. (2023-a). PhasixTM Mesh. Erişim tarihi: 20 Mayıs 2023, https://www.bd.com/en-us/products-and-solutions/products/product-families/phasix-mesh,
  • Medtronic. (2023-b). ParietexTM Composite Ventral Patch. Erişim tarihi: 20 Mayıs 2023, https://www.medtronic.com/covidien/en-us/products/hernia-repair/parietex-composite-ventral-patch.html
  • Mendibil, X., Ortiz, R., Sáenz de Viteri, V., Ugartemendia, J. M., Sarasua, J. R., & Quintana, I. (2020). High throughput manufacturing of bio-resorbable micro-porous scaffolds made of poly (L-lactide-co-ε-caprolactone) by micro-extrusion for soft tissue engineering applications. Polymers, 12(1), 34. doi:10.3390/polym12010034
  • Nardo, T., Chiono, V., Gentile, P., Tabrizian, M., & Ciardelli, G. (2016). Poly (DL-lactide-co-ε-caprolactone) and poly (DL-lactide-co-glycolide) blends for biomedical application: Physical properties, cell compatibility, and in vitro degradation behavior. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(14), 741-750. doi: 10.1080/00914037.2016.1163566
  • Olmos‐Juste, R., Olza, S., Gabilondo, N., & Eceiza, A. (2022). Tailor‐made 3D printed meshes of alginate‐waterborne polyurethane as suitable ımplants for hernia repair. Macromolecular Bioscience, 22(9), 2200124. doi: 10.1002/mabi.202200124
  • Öberg, S., Andresen, K., & Rosenberg, J. (2017). Absorbable meshes in ınguinal hernia surgery: A systematic review and meta-analysis. Surgical Innovation, 24(3), 289-298. doi: 10.1177/1553350617697849
  • Pizza, F., D’Antonio, D., Arcopinto, M., Dell’Isola, C., & Marvaso, A. (2020). Safety and efficacy of prophylactic resorbable biosynthetic mesh following midline laparotomy in clean/contemned field: Preliminary results of a randomized double blind prospective trial. Hernia, 24(1), 85-92. doi: 10.1007/s10029-019-02025-4
  • Pizza, F., D’Antonio, D., Lucido, F. S., Del Rio, P., Dell’Isola, C., Brusciano, L., Tolone, S., Docimo, L., & Gambardella, C. (2022). Is absorbable mesh useful in preventing parastomal hernia after emergency surgery? The PARTHENOPE study. Hernia, 26(2), 507-516. doi: 10.1007/s10029-022-02579-w
  • Qamar, N., Abbas, N., Irfan, M., Hussain, A., Arshad, M. S., Latif, S., Mehmood, F., & Ghori, M. U. (2019). Personalized 3D printed ciprofloxacin impregnated meshes for the management of hernia. Journal of Drug Delivery Science and Technology, 53, 101164. doi: 10.1016/j.jddst.2019.101164
  • Saha, T., Houshyar, S., Sarker, S. R., Pyreddy, S., Dekiwadia, C., Nasa, Z., Padhye, R., & Wang, X. (2021). Nanodiamond‐chitosan functionalized hernia mesh for biocompatibility and antimicrobial activity. Journal of Biomedical Materials Research Part A, 109(12), 2449-2461. doi: 10.1002/jbm.a.37237
  • Saha, T., Wang, X., Padhye, R., & Houshyar, S. (2022). A review of recent developments of polypropylene surgical mesh for hernia repair. OpenNano, 7, 100046. doi: 10.1016/j.onano.2022.100046
  • Sanbhal, N., Saitaer, X., Peerzada, M., Habboush, A., Wang, F., & Wang, L. (2019). One-Step Surface Functionalized Hydrophilic Polypropylene Meshes for Hernia Repair Using Bio-Inspired Polydopamine. Fibers, 7(1), 6. doi: 10.3390/fib7010006
  • Shin, C. S., Cabrera, F. J., Lee, R., Kim, J., Ammassam Veettil, R., Zaheer, M., Adumbumkulath, A., Mhatre, K., Ajayan, P. M., Curley, S. A., Scott, B. G., & Acharya, G. (2021). 3D‐bioprinted inflammation modulating polymer scaffolds for soft tissue repair. Advanced Materials, 33(4), 2003778. doi: 10.1002/adma.202003778
  • Song, Z., Yang, D., Hu, Q., Wang, Y., Zhang, H., Dong, W., Yang, J., & Gu, Y. (2023). Reconstruction of Abdominal Wall Defect with Composite Scaffold of 3D Printed ADM/PLA in a Rat Model. Macromolecular Bioscience, 2200521. doi: 10.1002/mabi.202200521
  • Taylor, D. (2018). The failure of polypropylene surgical mesh in vivo. Journal of the Mechanical Behavior of Biomedical Materials, 88, 370-376. doi: 10.1016/j.jmbbm.2018.08.041
  • Ulrich, D., Edwards, S. L., White, J. F., Supit, T., Ramshaw, J. A. M., Lo, C., Rosamilla, A., Werkmeister, J. A., & Gargett, C. E. (2012). A preclinical evaluation of alternative synthetic biomaterials for fascial defect repair using a rat abdominal hernia model. PLoS ONE, 7(11), e50044. doi: 10.1371/journal.pone.0050044
  • Wang See, C., Kim, T., & Zhu, D. (2020). Hernia mesh and hernia repair: A review. Engineered Regeneration, 1, 19-33. doi: 10.1016/j.engreg.2020.05.002
  • Wolf, M. T., Carruthers, C. A., Dearth, C. L., Crapo, P. M., Huber, A., Burnsed, O. A., Londono, R., Johnson, S. A., Daly, K. A., Stahl, E. C., Freund, J. M., Medberry, C. J., Carey, L. E., Nieponice, A., Amoroso, N. J., Badylak, S. F. (2014). Polypropylene surgical mesh coated with extracellular matrix mitigates the host foreign body response: Polypropylene surgical mesh coated with ECM. Journal of Biomedical Materials Research Part A, 102(1), 234-246. doi: 10.1002/jbm.a.34671
  • Yuan, M., Hu, M., Dai, F., Fan, Y., Deng, Z., Deng, H., & Cheng, Y. (2021). Application of synthetic and natural polymers in surgical mesh for pelvic floor reconstruction. Materials & Design, 209, 109984. doi: 10.1016/j.matdes.2021.109984
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Bengi Yılmaz 0000-0001-7642-4684

Early Pub Date July 13, 2023
Publication Date July 14, 2023
Submission Date April 18, 2023
Published in Issue Year 2023 Volume: 15 Issue: 2

Cite

APA Yılmaz, B. (2023). Yumuşak Doku Onarımı için Poli(l-laktid-ko-kaprolakton) Biyobozunur Cerrahi Yamaların 3B Baskısı ve Jelatin Kaplanması. International Journal of Engineering Research and Development, 15(2), 860-871. https://doi.org/10.29137/umagd.1285188

All Rights Reserved. Kırıkkale University, Faculty of Engineering.