Research Article
BibTex RIS Cite

Investigation of Hardness and Wear Behavior of Al6061 Matrix SiC Al2O3 and Coal Slag Powder Reinforced Hybrid Composites

Year 2023, Volume: 15 Issue: 2, 598 - 609, 14.07.2023
https://doi.org/10.29137/umagd.1287314

Abstract

In this study, we have focused on the use of waste coal slag, which is formed under the boiler as a result of the combustion of coal used as fuel in thermal power plants, as reinforcement in Metal Matrix Composites (MMC) and its compatibility with SiC and Al2O3. Al6061 alloy, which is frequently used in the automobile and aerospace industry, was chosen as the matrix. Composites were fabricated using reinforcements with 22-59µm powder size at reinforcement-to-volume ratios of 1, 3, 5 wt%, binary hybrid composites at 4, 6, 8 wt%, and ternary hybrid (tri-hybrid) composites at 7, 9, 11 wt%. Two-stage stir casting method, which is one of the liquid-state production methods, was used in the production of composites. The microstructures of the composites were monitored by scanning electron microscopy to determine the presence of reinforcements and the homogeneous distribution of the reinforcement in the microstructure. The hardness of the composites was determined by the Brinell hardness measurement method. Pin on Disk method, one of the standard tests used to measure the wear behavior of the composites produced within the scope of this study and to perform dry friction wear tests, was used. The wear characteristics of the material pairs were generated from the obtained test results. Coal slag powder-reinforced composites were successfully produced. Hardness tests revealed that coal slag powder can increase the composite's hardness s almost as effectively as SiC and Al2O3. Similar to the other reinforcements, the addition of the coal slag powder improved the abrasion resistance of the composites.

References

  • Annual Book of ASTM Standards, 1992, Standard Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete, vol. 04.02, ASTM, Philadelphia, PA, USA, C 618-92a, 306-308.
  • Argiz, C., Sanjuán, M. Á., & Menéndez, E. (2017). Coal Bottom Ash for Portland Cement Production. Advances in Materials Science and Engineering, 2017, Article ID 6068286, 7 pages. .https://doi.org/10.1155/2017/6068286.
  • Aydın, E. (2016). Novel Coal Bottom Ash Waste Composites for Sustainable Construction. Construction and Building Materials, 124, 582-588.
  • Bayca, S.U., Batar, T., Sayin, E., Solak, O., & Kahraman, B. (2008). The Influence of Coal Bottom Ash and Tincal (Boron Mineral) Additions on the Physical and Microstructures of Ceramic Bodies. J. Ceram. Proc. Res., 9(2), 118-122.
  • Benavidez, E., Grasselli, C., & Quaranta, N. (2003). Densification of Ashes from a Thermal Powerplant. Ceram. Int, 29, 61-68. https://doi.org/10.1016/S0272-8842(02)00090-1. Coal Combustion Byproducts, Univ. Kentucky URL http://www.uky.edu/KGS/coal/coal-for-combustionbyproducts.php., (Erişim: 25.10.2020).
  • Gao, J.N., Shi, N., Guo, X.B., Li, Y.F., Bi, X.J., Qi, Y.F., Guan, J., & Jiang, B. (2021). Electrochemically Selective Ammonia Extraction From Nitrate by Coupling Electron- and Phase-Transfer Reactions at a Three-Phase Interface. Environ. Sci. Technol. 55(15), 10684-10694. https://doi.org/10.1021/acs.est.0c08552.
  • Gündoğan, K., & Özsarı, A.R.B. (2019). Basınçlı İnfiltrasyon Yöntemiyle Üretilen AA2024 ve AA6061 Matrisli, B4C ve SiC Takviyeli Kompozit Malzemelerin Mikroyapı, Mekanik ve Isıl İletkenlik Özelliklerine Basıncın Etkisi. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 11(2), 657-669.
  • Hahn, H. T., & Tsai, S. W. (1980). Introduction to Composite Materials. Basel, Technomic Publishing Co.
  • Hashim, J., Looney, L., & Hashmi, M.S.J. (1999). Metal Matrix Composites Production by Stir Casting Method. Journal of Material Processing Technology, 92-93, 1-7.
  • Hooton, R.D., & Bickley, J.A. (2014). Design for Durability: the Key to Improving Concrete Sustainability. Construct Build Mater, 67, 422–430. https://doi.org/10.1016/ j.conbuildmat.2013.12.016. https://asm.matweb.com (03.04.2023)
  • Kaczmar, J.W., Pietrzak, K., & Wlosinski, W. (2000). The Production and Application of Metal Matrix Composite Materials. Journal of Materials Processing Technology, 106(1), 58-67.
  • Kim, H.K., & Lee, H.K. (2015). Coal Bottom Ash in Field of Civil Engineering: a Review of Advanced Applications and Environmental Considerations. KSCE J. Civ. Eng., 19, 1802-1818. https://doi.org/10.1007/s12205-015-0282-7.
  • Kumar, G.B.V., Rao, C.S.P., & Selvaraj, N. (2011). Mechanical and Tribological Behavior of Particulate Reinforced Aluminum Metal Matrix Composites – a review. Journal of Minerals and Materials Characterization and Engineering, 10(01), 59-91.
  • Kumar, G.B.V., Rao, C.S.P., Selvaraj, N., & Bhagyashekar, M.S. (2010). Studies on Al6061-SiC and Al7075-Al2O3 Metal Matrix Composites. Journal of Minerals & Materials Characterization & Engineering, 9(1), 43-55.
  • Lloyd, D. (1994). Particle Reinforced Aluminum And Magnesium Matrix Composites. International Materials Review, 39(1), 1-23.
  • Lokesh, N., Ramachandra, M., Mahendra, K.V., & Sreenith, T. (2013). Effect of Hardness, Tensile and Wear Behavior of Al- 4.5wt % Cu Alloy / Flyash / SiC Metal Matrix Composites. IJMER, 3(1), 381-385.
  • Mahendra, B.M., Arulshri, K.P., & Iyandurai, N. (2013). Evaluation of Mechanical Properties of Aluminium alloy 2024 Reinforced with Silicon Carbide and Fly Ash Hybrid Metal Matrix Composites. American Journal of Applied Sciences, 10(3), 219-229.
  • Martins, I.M., Gonçalves, A., & Marques, J. (2010). Durability and Strength Properties of Concrete Containing Coal Bottom Ash," in Proceedings pro077: International RILEM Conference on Material Science-AdIPoC-Additions Improving Properties of ConcreteTheme, 3, 275-283.
  • Mondal, M., Dutta, B.K., & Panigrahi, S.C. (2008). Wear Properties of Copper-Coated Short Steel Fiber Reinforced Stir Cast Al2Mg Alloy Composites. Wear, 265(5-6), 930-939.
  • Muthusamy, K., Rasid, M.H., Jokhio, G.A., Budiea, A.M.A., Hussin, M.W., & Mirza, J. (2020). Coal Bottom Ash as Sand Replacement in Concrete: a Review. Constr. Build. Mater, 236, 117507, 1-12. https://doi.org/10.1016/j.conbuildmat.2019.117507.
  • Paladugu, S.R.M., Aparna, N.D., & Sreekanth, P.S.R. (2022). Mechanical and Wear Analysis of Al6061-SiC/Al2O3/B4C Hybrid Metal Matrix Composites Using Stir Casting Process. Materials Today: Proceedings, 56(3), 1091-1096.
  • Panagopoulos, A., & Haralambous, K.-J. (2020). Environmental Impacts of Desalination and Brine Treatment-Challenges and Mitigation Measures. Mar. Pollut. Bull. 161, 111773, 1-12. https://doi.org/10.1016/j.marpolbul.2020.111773.
  • Panagopoulos, A., Haralambous, K.-J., & Loizidou, M. (2019). Desalination Brine Disposal Methods and Treatment Technologies-a review. Sci. Total Environ. 693, 133545, 1-23. https://doi.org/10.1016/j.scitotenv.2019.07.351.
  • Pawar, P.B., & Utpat, A.A. (2014). Development of Aluminium Based Silicon Carbide Particulate Metal Matrix Composite for Spur Gear. Procedia Materials Science,6, 1150-1156.
  • Pawar, P.B., & Utpat, A.A. (2014). Development of Aluminium Based Silicon Carbide Particulate Metal Matrix Composite for Spur Gear. Procedia Materials Science, 6, 1150-1156.
  • Prasad, S.V., & Asthana, R. (2004). Aluminum Metal-Matrix Composites for Automotive Applications: Tribological Considerations. Tribology Letters, 17(3), 445-453.
  • Prashanth, R., Shanmugasundaram, A., Abhinavaram, J., & Jagadeesh, S. (2017). The Role of TiC on the Hardness and Wear Resistance of AA7075 Using GTA. ARPN Journal of Engineering and Applied Sciences, 12(21), 5903-5913.
  • Ramachandra, M., & Radhakrıshna, K. (2006). Sliding Wear, Slurry Erosive Wear, And Corrosive Wear of Aluminium/SiC Composite. Materials Science-Poland, 24(2/1), 333-349.
  • Ramesh, C.S., & Safiulla, M. (2007). Wear Behavior of Hot Extruded Al6061 Based Composites. Wear, 263(1-6), 629-635.
  • Robin, N.K., Ilangovan, S., Arul, S., & Shanmugasundaram, A. (2015). Influence of Nickel Content on Mechanical Properties of Aluminium-Boron Carbide Hybrid Composite. International Journal of Applied Engineering Research, 10(12), 32311-32320.
  • Rohatgi, P. (1991). Cast Aluminum-Matrix Composites For Automotive Applications. The Journal of The Minerals, Metals & Materials Society, 43(4), 10-15.
  • Sani, M. S. H. M., Muftah, F., & Muda, Z. (2010). The properties of special concrete using washed bottom ash (WBA) as partial sand replacement. International Journal of Sustainable Construction Engineering and Technology, 1(2), 65-76.
  • Sanjith, J., Kiran, B., Chethan, G., & Mohan Kumar, K. (2015). A study on mechanical properties of latex modified high strength concrete using bottom ash as a replacement for fine aggregate. International Journal of Emerging Engineering Research and Technology, 3(6), 114-121.
  • Seshappa, A., & Prasad, B.A. (2022). Swirl Cast with Wire Cut Electric Discharge Machining For Investigational Purposes on Al7075/Al2O3&SiC. Materials Today: Proceedings, 68, 2258-2264.
  • Sharma, H., Tiwari, S.K., Kumar, A., & Singh, D. (2022). Investigation of Mechanical and Erosive Behaviour of the Al 6061-SiC Composites Fabricated by Stir Casting. Materials Today: Proceedings, 68, 446-453.
  • Sharma, V.K., Chaudhary, S., Singh, R.C., Vikas, V., Sonia, D., & Goel, V. (2020). Reusing Marble Dust as Reinforcement Material for Better Mechanical Performance: Studies on Compositing Aluminum Matrix. Material Research Express, 6, 1265f6.
  • Singh, N., Mithulraj, M., & Arya, S. (2018). Influence of Coal Bottom Ash as Fine Aggregates Replacement on Various Properties of Concretes: a review. Resour Conserv Recycl, 138, 257-271. https://doi.org/10.1016/j.resconrec.2018.07.025.
  • Singh, N., Mithulraj, M., & Arya, S. (2018). Influence of Coal Bottom Ash as Fine Aggregates Replacement on Various Properties of Concretes: a review. Resour Conserv Recycl 2018;138:257–71. https://doi.org/10.1016/j.resconrec.2018.07.025.
  • Subramani, K., Arunkumar, T., Mohanavel V., Kolappan, S., Kailasanathan, C., Rathinam, B.B., Subbiah, R., & Kumar S.S. (2022). Investigation on Wear Characteristics of Al 2219/Si3N4/Coal Bottom Ash MMC. Materials Today: Proceedings, 62(8), 5514-5518.
  • Surappa, M.K., & Rohatgi, P.K. (1981). Preparation and Properties of Cast Aluminium-Ceramic Particle Composites. Journal of Materials Science, 16(4), 983-993.
  • Surappa, M.K., & Rohatgi, P.K. (1981). Preparation and Properties of Cast Aluminium-Ceramic Particle Composites. Journal of Materials Science, 16(4), 983-993.
  • Suresha, S., Gowdb G.H., & Devakumar, M.L.S. (2020). Wear behavior of Al 7075/Al2O3/SiC Hybrid NMMC’s by Stir Casting Method. Materials Today: Proceedings, 24, 261-272.
  • Türkiye İstatistik Kurumu (TÜİK), 2020, Atık, Haber Bülteni.
  • Türkiye İstatistik Kurumu (TÜİK), 2022, Katı yakıtlar, Haber Bülteni.
  • Türkiye Kömür İşletmeleri Kurumu (TKİK), 2021, Kömür “Linyit” Sektör Raporu.
  • U.S. Environmental Protection Agency (USEPA), 2010. Human and Ecological Risk Assessment of Coal Combustion Wastes Umanath, K.,
  • Palanikumar, K., & Selvamani, S.T. (2013). Analysis of Dry Sliding Wear Behaviour of Al6061/SiC/Al2O3 Hybrid Metal Matrix Composites. Composites: Part B, 53, 159-168.
  • Ünlü, B.S. (2008). Investigation on Tribological and Mechanical Properties of Al2O3–SiC Reinforced Aluminum Composites Manufactured by Casting or PM method. Materials and Design. 2008;29(10):2002-2008.
  • Villanova, D.L., & Bergmann, C.P. (2007). Sinterability Study of Ceramic Bodies Made from a Mixture of Mineral Coal Bottom Ash and Soda-Lime Glass Cullet. Waste Manage Res., 25, 77-82. https://doi.org/10.1177/0734242X07069764.

Al6061 Matrisli SiC Al2O3 ve Kömür Cürufu Tozu Takviyeli Hibrit Kompozitlerin Sertlik ve Aşınma Davranışlarının İncelenmesi

Year 2023, Volume: 15 Issue: 2, 598 - 609, 14.07.2023
https://doi.org/10.29137/umagd.1287314

Abstract

Bu çalışmada Metal Matrisli Kompozitlerde (MMK), termik santralde yakıt olarak kullanılan kömürün yanması sonucunda kazan altında oluşan atık kömür cürufunun takviye olarak kullanılabilirliğine ve SiC, Al2O3 ile uyumuna odaklanılmıştır. Matris olarak otomobil ve havacılık endüstrisinde sıklıkla kullanılan Al6061 alaşımı seçilmiştir. Kompozitler ağırlıkça %1, 3, 5, ikili hibrit kompozitler ağırlıkça %4, 6, 8 ve üçlü hibrit kompozitler ise ağırlıkça %7, 9, 11 takviye-hacim oranlarında 22-59µm toz boyutuna sahip takviyeler kullanılarak üretilmiştir. Kompozitlerin üretiminde sıvı hal üretim yöntemlerinden olan iki kademeli karıştırmalı döküm yöntemi kullanılmıştır. Üretilen kompozitlerin mikro yapıları taramalı elektron mikroskobu ile görüntülenerek takviyelerin varlığı ve takviyenin içyapıda homojen dağılımı tespit edilmiştir. Kompozitlerin sertlikleri Brinell sertlik ölçüm yöntemi ile belirlenmiştir. Bu çalışma kapsamında üretilen kompozitlerin aşınma davranışını ölçmek ve kuru sürtünmeli aşınma testlerini yapmak için kullanılan standart testlerden Pin on Disk yöntemi kullanılmıştır. Elde edilen deney sonuçlarından malzeme çiftlerinin aşınma karakteristikleri oluşturulmuştur. Kömür cürufu tozu takviyeli kompozitler başarı ile üretilmiştir. Sertlik ölçümlerinde kömür cürufu tozunun da kompozitin sertliğini arttırmada neredeyse SiC ve Al2O3 kadar etkili olabildiği belirlenmiştir. Kömür cürufu tozu takviyesi de diğer takviye elemanları gibi kompozitlerin aşınma dayanımını artırmıştır.

References

  • Annual Book of ASTM Standards, 1992, Standard Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete, vol. 04.02, ASTM, Philadelphia, PA, USA, C 618-92a, 306-308.
  • Argiz, C., Sanjuán, M. Á., & Menéndez, E. (2017). Coal Bottom Ash for Portland Cement Production. Advances in Materials Science and Engineering, 2017, Article ID 6068286, 7 pages. .https://doi.org/10.1155/2017/6068286.
  • Aydın, E. (2016). Novel Coal Bottom Ash Waste Composites for Sustainable Construction. Construction and Building Materials, 124, 582-588.
  • Bayca, S.U., Batar, T., Sayin, E., Solak, O., & Kahraman, B. (2008). The Influence of Coal Bottom Ash and Tincal (Boron Mineral) Additions on the Physical and Microstructures of Ceramic Bodies. J. Ceram. Proc. Res., 9(2), 118-122.
  • Benavidez, E., Grasselli, C., & Quaranta, N. (2003). Densification of Ashes from a Thermal Powerplant. Ceram. Int, 29, 61-68. https://doi.org/10.1016/S0272-8842(02)00090-1. Coal Combustion Byproducts, Univ. Kentucky URL http://www.uky.edu/KGS/coal/coal-for-combustionbyproducts.php., (Erişim: 25.10.2020).
  • Gao, J.N., Shi, N., Guo, X.B., Li, Y.F., Bi, X.J., Qi, Y.F., Guan, J., & Jiang, B. (2021). Electrochemically Selective Ammonia Extraction From Nitrate by Coupling Electron- and Phase-Transfer Reactions at a Three-Phase Interface. Environ. Sci. Technol. 55(15), 10684-10694. https://doi.org/10.1021/acs.est.0c08552.
  • Gündoğan, K., & Özsarı, A.R.B. (2019). Basınçlı İnfiltrasyon Yöntemiyle Üretilen AA2024 ve AA6061 Matrisli, B4C ve SiC Takviyeli Kompozit Malzemelerin Mikroyapı, Mekanik ve Isıl İletkenlik Özelliklerine Basıncın Etkisi. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 11(2), 657-669.
  • Hahn, H. T., & Tsai, S. W. (1980). Introduction to Composite Materials. Basel, Technomic Publishing Co.
  • Hashim, J., Looney, L., & Hashmi, M.S.J. (1999). Metal Matrix Composites Production by Stir Casting Method. Journal of Material Processing Technology, 92-93, 1-7.
  • Hooton, R.D., & Bickley, J.A. (2014). Design for Durability: the Key to Improving Concrete Sustainability. Construct Build Mater, 67, 422–430. https://doi.org/10.1016/ j.conbuildmat.2013.12.016. https://asm.matweb.com (03.04.2023)
  • Kaczmar, J.W., Pietrzak, K., & Wlosinski, W. (2000). The Production and Application of Metal Matrix Composite Materials. Journal of Materials Processing Technology, 106(1), 58-67.
  • Kim, H.K., & Lee, H.K. (2015). Coal Bottom Ash in Field of Civil Engineering: a Review of Advanced Applications and Environmental Considerations. KSCE J. Civ. Eng., 19, 1802-1818. https://doi.org/10.1007/s12205-015-0282-7.
  • Kumar, G.B.V., Rao, C.S.P., & Selvaraj, N. (2011). Mechanical and Tribological Behavior of Particulate Reinforced Aluminum Metal Matrix Composites – a review. Journal of Minerals and Materials Characterization and Engineering, 10(01), 59-91.
  • Kumar, G.B.V., Rao, C.S.P., Selvaraj, N., & Bhagyashekar, M.S. (2010). Studies on Al6061-SiC and Al7075-Al2O3 Metal Matrix Composites. Journal of Minerals & Materials Characterization & Engineering, 9(1), 43-55.
  • Lloyd, D. (1994). Particle Reinforced Aluminum And Magnesium Matrix Composites. International Materials Review, 39(1), 1-23.
  • Lokesh, N., Ramachandra, M., Mahendra, K.V., & Sreenith, T. (2013). Effect of Hardness, Tensile and Wear Behavior of Al- 4.5wt % Cu Alloy / Flyash / SiC Metal Matrix Composites. IJMER, 3(1), 381-385.
  • Mahendra, B.M., Arulshri, K.P., & Iyandurai, N. (2013). Evaluation of Mechanical Properties of Aluminium alloy 2024 Reinforced with Silicon Carbide and Fly Ash Hybrid Metal Matrix Composites. American Journal of Applied Sciences, 10(3), 219-229.
  • Martins, I.M., Gonçalves, A., & Marques, J. (2010). Durability and Strength Properties of Concrete Containing Coal Bottom Ash," in Proceedings pro077: International RILEM Conference on Material Science-AdIPoC-Additions Improving Properties of ConcreteTheme, 3, 275-283.
  • Mondal, M., Dutta, B.K., & Panigrahi, S.C. (2008). Wear Properties of Copper-Coated Short Steel Fiber Reinforced Stir Cast Al2Mg Alloy Composites. Wear, 265(5-6), 930-939.
  • Muthusamy, K., Rasid, M.H., Jokhio, G.A., Budiea, A.M.A., Hussin, M.W., & Mirza, J. (2020). Coal Bottom Ash as Sand Replacement in Concrete: a Review. Constr. Build. Mater, 236, 117507, 1-12. https://doi.org/10.1016/j.conbuildmat.2019.117507.
  • Paladugu, S.R.M., Aparna, N.D., & Sreekanth, P.S.R. (2022). Mechanical and Wear Analysis of Al6061-SiC/Al2O3/B4C Hybrid Metal Matrix Composites Using Stir Casting Process. Materials Today: Proceedings, 56(3), 1091-1096.
  • Panagopoulos, A., & Haralambous, K.-J. (2020). Environmental Impacts of Desalination and Brine Treatment-Challenges and Mitigation Measures. Mar. Pollut. Bull. 161, 111773, 1-12. https://doi.org/10.1016/j.marpolbul.2020.111773.
  • Panagopoulos, A., Haralambous, K.-J., & Loizidou, M. (2019). Desalination Brine Disposal Methods and Treatment Technologies-a review. Sci. Total Environ. 693, 133545, 1-23. https://doi.org/10.1016/j.scitotenv.2019.07.351.
  • Pawar, P.B., & Utpat, A.A. (2014). Development of Aluminium Based Silicon Carbide Particulate Metal Matrix Composite for Spur Gear. Procedia Materials Science,6, 1150-1156.
  • Pawar, P.B., & Utpat, A.A. (2014). Development of Aluminium Based Silicon Carbide Particulate Metal Matrix Composite for Spur Gear. Procedia Materials Science, 6, 1150-1156.
  • Prasad, S.V., & Asthana, R. (2004). Aluminum Metal-Matrix Composites for Automotive Applications: Tribological Considerations. Tribology Letters, 17(3), 445-453.
  • Prashanth, R., Shanmugasundaram, A., Abhinavaram, J., & Jagadeesh, S. (2017). The Role of TiC on the Hardness and Wear Resistance of AA7075 Using GTA. ARPN Journal of Engineering and Applied Sciences, 12(21), 5903-5913.
  • Ramachandra, M., & Radhakrıshna, K. (2006). Sliding Wear, Slurry Erosive Wear, And Corrosive Wear of Aluminium/SiC Composite. Materials Science-Poland, 24(2/1), 333-349.
  • Ramesh, C.S., & Safiulla, M. (2007). Wear Behavior of Hot Extruded Al6061 Based Composites. Wear, 263(1-6), 629-635.
  • Robin, N.K., Ilangovan, S., Arul, S., & Shanmugasundaram, A. (2015). Influence of Nickel Content on Mechanical Properties of Aluminium-Boron Carbide Hybrid Composite. International Journal of Applied Engineering Research, 10(12), 32311-32320.
  • Rohatgi, P. (1991). Cast Aluminum-Matrix Composites For Automotive Applications. The Journal of The Minerals, Metals & Materials Society, 43(4), 10-15.
  • Sani, M. S. H. M., Muftah, F., & Muda, Z. (2010). The properties of special concrete using washed bottom ash (WBA) as partial sand replacement. International Journal of Sustainable Construction Engineering and Technology, 1(2), 65-76.
  • Sanjith, J., Kiran, B., Chethan, G., & Mohan Kumar, K. (2015). A study on mechanical properties of latex modified high strength concrete using bottom ash as a replacement for fine aggregate. International Journal of Emerging Engineering Research and Technology, 3(6), 114-121.
  • Seshappa, A., & Prasad, B.A. (2022). Swirl Cast with Wire Cut Electric Discharge Machining For Investigational Purposes on Al7075/Al2O3&SiC. Materials Today: Proceedings, 68, 2258-2264.
  • Sharma, H., Tiwari, S.K., Kumar, A., & Singh, D. (2022). Investigation of Mechanical and Erosive Behaviour of the Al 6061-SiC Composites Fabricated by Stir Casting. Materials Today: Proceedings, 68, 446-453.
  • Sharma, V.K., Chaudhary, S., Singh, R.C., Vikas, V., Sonia, D., & Goel, V. (2020). Reusing Marble Dust as Reinforcement Material for Better Mechanical Performance: Studies on Compositing Aluminum Matrix. Material Research Express, 6, 1265f6.
  • Singh, N., Mithulraj, M., & Arya, S. (2018). Influence of Coal Bottom Ash as Fine Aggregates Replacement on Various Properties of Concretes: a review. Resour Conserv Recycl, 138, 257-271. https://doi.org/10.1016/j.resconrec.2018.07.025.
  • Singh, N., Mithulraj, M., & Arya, S. (2018). Influence of Coal Bottom Ash as Fine Aggregates Replacement on Various Properties of Concretes: a review. Resour Conserv Recycl 2018;138:257–71. https://doi.org/10.1016/j.resconrec.2018.07.025.
  • Subramani, K., Arunkumar, T., Mohanavel V., Kolappan, S., Kailasanathan, C., Rathinam, B.B., Subbiah, R., & Kumar S.S. (2022). Investigation on Wear Characteristics of Al 2219/Si3N4/Coal Bottom Ash MMC. Materials Today: Proceedings, 62(8), 5514-5518.
  • Surappa, M.K., & Rohatgi, P.K. (1981). Preparation and Properties of Cast Aluminium-Ceramic Particle Composites. Journal of Materials Science, 16(4), 983-993.
  • Surappa, M.K., & Rohatgi, P.K. (1981). Preparation and Properties of Cast Aluminium-Ceramic Particle Composites. Journal of Materials Science, 16(4), 983-993.
  • Suresha, S., Gowdb G.H., & Devakumar, M.L.S. (2020). Wear behavior of Al 7075/Al2O3/SiC Hybrid NMMC’s by Stir Casting Method. Materials Today: Proceedings, 24, 261-272.
  • Türkiye İstatistik Kurumu (TÜİK), 2020, Atık, Haber Bülteni.
  • Türkiye İstatistik Kurumu (TÜİK), 2022, Katı yakıtlar, Haber Bülteni.
  • Türkiye Kömür İşletmeleri Kurumu (TKİK), 2021, Kömür “Linyit” Sektör Raporu.
  • U.S. Environmental Protection Agency (USEPA), 2010. Human and Ecological Risk Assessment of Coal Combustion Wastes Umanath, K.,
  • Palanikumar, K., & Selvamani, S.T. (2013). Analysis of Dry Sliding Wear Behaviour of Al6061/SiC/Al2O3 Hybrid Metal Matrix Composites. Composites: Part B, 53, 159-168.
  • Ünlü, B.S. (2008). Investigation on Tribological and Mechanical Properties of Al2O3–SiC Reinforced Aluminum Composites Manufactured by Casting or PM method. Materials and Design. 2008;29(10):2002-2008.
  • Villanova, D.L., & Bergmann, C.P. (2007). Sinterability Study of Ceramic Bodies Made from a Mixture of Mineral Coal Bottom Ash and Soda-Lime Glass Cullet. Waste Manage Res., 25, 77-82. https://doi.org/10.1177/0734242X07069764.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering, Materials Engineering (Other)
Journal Section Articles
Authors

Rahmi Kocaman This is me 0009-0001-5816-3537

Serkan Ateş 0000-0002-5858-5190

Early Pub Date July 7, 2023
Publication Date July 14, 2023
Submission Date April 25, 2023
Published in Issue Year 2023 Volume: 15 Issue: 2

Cite

APA Kocaman, R., & Ateş, S. (2023). Al6061 Matrisli SiC Al2O3 ve Kömür Cürufu Tozu Takviyeli Hibrit Kompozitlerin Sertlik ve Aşınma Davranışlarının İncelenmesi. International Journal of Engineering Research and Development, 15(2), 598-609. https://doi.org/10.29137/umagd.1287314

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.