Research Article
BibTex RIS Cite

Two DO-CCII Based Lossless Floating Capacitance Multipliers

Year 2023, Volume: 15 Issue: 2, 749 - 762, 14.07.2023
https://doi.org/10.29137/umagd.1305068

Abstract

In this paper, two new lossless floating capacitance multipliers (FCMs) are designed. These FCMs consist of two dual-output second-generation current conveyors (DO-CCIIs). In the designed FCMs, two resistors and a capacitor are used. The resistors of the proposed FCMs are grounded. Nevertheless, the capacitors of the FCMs are floating. The proposed circuits can be electronically adjusted if current controlled DO-CCIIs are employed instead of the DO-CCIIs in the proposed lossless FCMs. Furthermore, passive element matching conditions do not necessary for the proposed circuits. The proposed FCMs are tested in the second-order passive filter. The SPICE program is carried out for all the simulations while utilizing the parameters of the 0.18 µm CMOS technology.

References

  • Abuelma’Atti, M. T., & Tasadduq, N. A. (1999). Electronically tunable capacitance multiplier and frequency-dependent negativeresistance simulator using the current-controlled current conveyor. Microelectronics Journal, 30(9), 869–873.
  • Al-Absi, M. A., & Al-Khulaifi, A. A. (2019). A new floating and tunable capacitance multiplier with large multiplication factor. IEEE Access, 7, 120076–120081.
  • Amico, A. D., Natale, C. Di, Mariucci, M., & Barccarani, G. (1997). Active capacitance multiplication for sensor application. Proceedings of Italian Conference of Sensors and Microsystems.
  • Ferri, G., & Guerrini, N. C. (2001). Low-voltage low-power novel CCII topologies and applications. ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems, 1095–1098.
  • Giuseppe, F., & Guerrini, N. C. (2004). Low-voltage low-power CMOS current conveyors. Kluwer Academic Publishers.
  • Hassanein, W. S., Awad, I. A., & Soliman, A. M. (2005). New high accuracy CMOS current conveyors. AEU - International Journal of Electronics and Communications, 59(7), 384–391.
  • Jaikla, W., & Siripruchyanun, M. (2007). Realization of current conveyors-based floating simulator employing grounded passive elements. Proc. ECTI Con, 89–92.
  • Kuntman, H. H., & Uygur, A. (2012). New possibilities and trends in circuit design for analog signal processing. 2012 International Conference on Applied Electronics, 1–9.
  • Minaei, S., & Yuce, E. (2010). Novel voltage-mode all-pass filter based on using DVCCs. Circuits, Systems, and Signal Processing, 29, 391–402.
  • Minaei, S., Yuce, E., & Cicekoglu, O. (2006). A versatile active circuit for realising floating inductance, capacitance, FDNR and admittance converter. Analog Integrated Circuits and Signal Processing, 47(2), 199–202.
  • Mohan, P. V. A. (2005). Floating capacitance simulation using current conveyors. Journal of Circuits, Systems, and Computers, 14(1), 123–128.
  • Pal, K. (1981). New inductance and capacitor floatation schemes using current conveyors. Electronics Letters, 17(21), 807–808.
  • Petchakit, W., & Petchakit, S. (2005). New floating capacitance multipliers. Proceedings of 28th Electrical Engineering Conference (EECON-28), 2, 1233–1236.
  • Saad, R. A., & Soliman, A. M. (2010). On the systematic synthesis of CCII-based floating simulators. International Journal of Circuit Theory and Applications, 38(9), 935–967.
  • Sagbas, M., Ayten, U. E., Sedef, H., & Koksal, M. (2009). Floating immittance function simulator and its applications. Circuits, Systems, and Signal Processing, 28(1), 55–63.
  • Senani, R. (1982). Novel lossless synthetic floating inductor employing a grounded capacitor. Electronics Letters, 18(10), 413–414.
  • Senani, R., Bhaskar, D. R., & Singh, A. K. (2015). Current conveyors: variants, applications and hardware implementations. Springer International Publishing.
  • Siripruchyanun, M., Phattanasak, M., & Jaikla, W. (2007). Temperature-insensitive, current conveyor-based floating simulator topology. 2007 International Symposium on Integrated Circuits, 65–68.
  • Toumazou, C., Lidgey, F. J., & Haigh, D. G. (1993). Analogue IC design: the current-mode approach. The Institution of Engineering and Technology.
  • Wilson, B. (1990). Recent developments in current conveyors and current-mode circuits. IEE Proceedings G (Circuits, Devices and Systems), 137(2), 63–77.
  • Wilson, B. (1992). Tutorial review trends in current conveyor and current-mode amplifier design. International Journal of Electronics, 73(3), 573–583.
  • Yuce, E. (2006a). Floating inductance, FDNR and capacitance simulation circuit employing only grounded passive elements. International Journal of Electronics, 93(10), 679–688.
  • Yuce, E. (2006b). On the realization of the floating simulators using only grounded passive components. Analog Integrated Circuits and Signal Processing, 49(2), 161–166.
  • Yuce, E. (2017). DO-CCII/DO-DVCC based electronically fine tunable quadrature oscillators. Journal of Circuits, Systems and Computers, 26(2), 1–17.
  • Yuce, E., Cicekoglu, O., & Minaei, S. (2006). CCII-based grounded to floating immittance converter and a floating inductance simulator. Analog Integrated Circuits and Signal Processing, 46(3), 287–291.
  • Yuce, E., Minaei, S., & Cicekoglu, O. (2006). Resistorless floating immittance function simulators employing current controlled conveyors and a grounded capacitor. Electrical Engineering, 88(6), 519–525. Yucehan, T., & Yuce, E. (2022). CCII-based simulated floating inductor and floating capacitance multiplier. Analog Integrated Circuits and Signal Processing, 112, 417–432.
  • Yucehan, T., & Yuce, E. (2022). CCII-based simulated floating inductor and floating capacitance multiplier. Analog Integrated Circuits and Signal Processing, 112, 417–432

İki DO-CCII Tabanlı Kayıpsız Yüzen Kapasite Çarpan

Year 2023, Volume: 15 Issue: 2, 749 - 762, 14.07.2023
https://doi.org/10.29137/umagd.1305068

Abstract

Bu çalışmada, iki yeni kayıpsız yüzen kapasite çarpanı (FCM) tasarlanmıştır. Bu FCM devreleri, iki adet çift çıkışlı ikinci nesil akım taşıyıcı (DO-CCII) ile tasarlanmıştır. Tasarlanan FCM devrelerinde iki direnç ve bir kondansatör kullanılmıştır. Önerilen FCM devrelerinin dirençleri topraklanmıştır. Buna rağmen, önerilen devrelerde kullanılan kondansatörler yüzen seçilmiştir. Önerilen kayıpsız FCM devrelerindeki DO-CCII aktif elemanları yerine akım kontrollü DO-CCII aktif elemanları kullanılırsa, önerilen devreler elektronik olarak ayarlanabilir olur. Ayrıca, önerilen devreler pasif eleman eşleştirme sorunlarından muzdarip değildir. Önerilen FCM devreleri ikinci dereceden pasif filtrede test edilmiştir. Tüm simülasyonlar, 0.18 µm CMOS teknolojisinin parametreleri kullanılarak SPICE programı aracılığı ile gerçekleştirilmiştir.

References

  • Abuelma’Atti, M. T., & Tasadduq, N. A. (1999). Electronically tunable capacitance multiplier and frequency-dependent negativeresistance simulator using the current-controlled current conveyor. Microelectronics Journal, 30(9), 869–873.
  • Al-Absi, M. A., & Al-Khulaifi, A. A. (2019). A new floating and tunable capacitance multiplier with large multiplication factor. IEEE Access, 7, 120076–120081.
  • Amico, A. D., Natale, C. Di, Mariucci, M., & Barccarani, G. (1997). Active capacitance multiplication for sensor application. Proceedings of Italian Conference of Sensors and Microsystems.
  • Ferri, G., & Guerrini, N. C. (2001). Low-voltage low-power novel CCII topologies and applications. ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems, 1095–1098.
  • Giuseppe, F., & Guerrini, N. C. (2004). Low-voltage low-power CMOS current conveyors. Kluwer Academic Publishers.
  • Hassanein, W. S., Awad, I. A., & Soliman, A. M. (2005). New high accuracy CMOS current conveyors. AEU - International Journal of Electronics and Communications, 59(7), 384–391.
  • Jaikla, W., & Siripruchyanun, M. (2007). Realization of current conveyors-based floating simulator employing grounded passive elements. Proc. ECTI Con, 89–92.
  • Kuntman, H. H., & Uygur, A. (2012). New possibilities and trends in circuit design for analog signal processing. 2012 International Conference on Applied Electronics, 1–9.
  • Minaei, S., & Yuce, E. (2010). Novel voltage-mode all-pass filter based on using DVCCs. Circuits, Systems, and Signal Processing, 29, 391–402.
  • Minaei, S., Yuce, E., & Cicekoglu, O. (2006). A versatile active circuit for realising floating inductance, capacitance, FDNR and admittance converter. Analog Integrated Circuits and Signal Processing, 47(2), 199–202.
  • Mohan, P. V. A. (2005). Floating capacitance simulation using current conveyors. Journal of Circuits, Systems, and Computers, 14(1), 123–128.
  • Pal, K. (1981). New inductance and capacitor floatation schemes using current conveyors. Electronics Letters, 17(21), 807–808.
  • Petchakit, W., & Petchakit, S. (2005). New floating capacitance multipliers. Proceedings of 28th Electrical Engineering Conference (EECON-28), 2, 1233–1236.
  • Saad, R. A., & Soliman, A. M. (2010). On the systematic synthesis of CCII-based floating simulators. International Journal of Circuit Theory and Applications, 38(9), 935–967.
  • Sagbas, M., Ayten, U. E., Sedef, H., & Koksal, M. (2009). Floating immittance function simulator and its applications. Circuits, Systems, and Signal Processing, 28(1), 55–63.
  • Senani, R. (1982). Novel lossless synthetic floating inductor employing a grounded capacitor. Electronics Letters, 18(10), 413–414.
  • Senani, R., Bhaskar, D. R., & Singh, A. K. (2015). Current conveyors: variants, applications and hardware implementations. Springer International Publishing.
  • Siripruchyanun, M., Phattanasak, M., & Jaikla, W. (2007). Temperature-insensitive, current conveyor-based floating simulator topology. 2007 International Symposium on Integrated Circuits, 65–68.
  • Toumazou, C., Lidgey, F. J., & Haigh, D. G. (1993). Analogue IC design: the current-mode approach. The Institution of Engineering and Technology.
  • Wilson, B. (1990). Recent developments in current conveyors and current-mode circuits. IEE Proceedings G (Circuits, Devices and Systems), 137(2), 63–77.
  • Wilson, B. (1992). Tutorial review trends in current conveyor and current-mode amplifier design. International Journal of Electronics, 73(3), 573–583.
  • Yuce, E. (2006a). Floating inductance, FDNR and capacitance simulation circuit employing only grounded passive elements. International Journal of Electronics, 93(10), 679–688.
  • Yuce, E. (2006b). On the realization of the floating simulators using only grounded passive components. Analog Integrated Circuits and Signal Processing, 49(2), 161–166.
  • Yuce, E. (2017). DO-CCII/DO-DVCC based electronically fine tunable quadrature oscillators. Journal of Circuits, Systems and Computers, 26(2), 1–17.
  • Yuce, E., Cicekoglu, O., & Minaei, S. (2006). CCII-based grounded to floating immittance converter and a floating inductance simulator. Analog Integrated Circuits and Signal Processing, 46(3), 287–291.
  • Yuce, E., Minaei, S., & Cicekoglu, O. (2006). Resistorless floating immittance function simulators employing current controlled conveyors and a grounded capacitor. Electrical Engineering, 88(6), 519–525. Yucehan, T., & Yuce, E. (2022). CCII-based simulated floating inductor and floating capacitance multiplier. Analog Integrated Circuits and Signal Processing, 112, 417–432.
  • Yucehan, T., & Yuce, E. (2022). CCII-based simulated floating inductor and floating capacitance multiplier. Analog Integrated Circuits and Signal Processing, 112, 417–432
There are 27 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Articles
Authors

Tolga Yücehan 0000-0002-8835-0907

Early Pub Date July 7, 2023
Publication Date July 14, 2023
Submission Date May 29, 2023
Published in Issue Year 2023 Volume: 15 Issue: 2

Cite

APA Yücehan, T. (2023). Two DO-CCII Based Lossless Floating Capacitance Multipliers. International Journal of Engineering Research and Development, 15(2), 749-762. https://doi.org/10.29137/umagd.1305068

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.