Research Article
BibTex RIS Cite

Faz Değişim Malzemelerinde Kullanılan İnorganik Nanomalzemelerin Multımoora Yöntemiyle Önceliklendirilmesi

Year 2023, Volume: 15 Issue: 3, 153 - 165, 31.12.2023
https://doi.org/10.29137/umagd.1318413

Abstract

Faz değişim malzemeleri (Phase Change Materials (PCM)), özellikle devamlı ulaşılamayan yenilenebilir enerji kaynaklarını depolayarak ve talep edildiğinde kullanılmasını sağlayarak yenilenebilir ve sürdürülebilir enerji sağlar. PCM’lerin termal enerji depolamada istenilen termodinamik, kinetik, kimyasal ve ekonomik özellikleri bir arada tek başına karşılayamamalarından dolayı farklı nanomalzemeler ile desteklenmektedir. PCM’in özelliklerini geliştirmek için kullanılan nanomalzemelerin seçimi için kritik parametreler mevcut olup, bu çalışmada inorganik nanomalzemelerin önceliklendirilmesi amaçlanmıştır. Bu noktada Çok Kriterli Karar Verme (Multi Criteria Decision Maker (MCDM)) metodolojisi oldukça kullanışlıdır. Bu çalışmada, PCM'lerde kullanılabilecek 5 farklı inorganik nanomalzeme (bakır oksit, aluminyum oksit, gümüş, titanyum oksit ve bor nitrürün) önceliklendirilmesi için Oran Analizine Dayalı Çok Amaçlı Optimizasyon Yöntemi (MULTIMOORA) kullanılmıştır. Erime noktası değişimi, gizli ısı değişimi, termal iletkenlik değişimi, ön işlem gereksinimi, toksisite ve maliyet olmak üzere 6 değerlendirme kriteri belirlenmiştir. Kriter ağırlıkları sırasıyla entropi (objektif yöntem) ve sıralama (subjektif) yöntemleriyle belirlenmiştir. Her iki kriter ağırlıklandırma yöntemine göre de erime noktası değişimi en önemli kriter olarak belirlenmiştir. MULTIMOORA sonuçlarına göre PCM'lere eklenecek en uygun inorganik nanomalzemenin bor nitrür (BN) olduğu görülmüştür.

Supporting Institution

Eskişehir Teknik Üniversitesi

Project Number

20ADP097

References

  • Al Ghossein, R. M., Hossain, M. S., & Khodadadi, J. M. (2017). Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based silver nanostructure-enhanced phase change materials for thermal energy storage. International Journal of Heat and Mass Transfer, 107, 697-711. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.059
  • Aydın, A. A. (2010). The synthesis and thermal properties of novel organic phase change materials (PhD thesis). İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği Ana Bilim Dalı
  • Cárdenas, B., & León, N. (2013). High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques. Renewable and sustainable energy reviews, 27, 724-737. https://doi.org/10.1016/j.rser.2013.07.028
  • Coetzee, D., Venkataraman, M., Militky, J., & Petru, M. (2020). Influence of nanoparticles on thermal and electrical conductivity of composites. Polymers, 12(4), 742. https://doi:10.3390/polym12040742
  • Das, D., Sharma, R. K., Saikia, P., & Rakshit, D. (2021). An integrated entropy-based multi-attribute decision-making model for phase change material selection and passive thermal management. Decision Analytics Journal, 1, 100011. https://doi.org/10.1016/j.dajour.2021.100011
  • Demir, G., & Arslan, R. (2022) Sensitivity Analysis in Multi-Criterion Decision-Making Problems. Ankara Hacı Bayram Veli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 24(3), 1025-1056. https://doi.org/10.1016/j.dajour.2021.100011
  • Fang, X., Fan, L. W., Ding, Q., Yao, X. L., Wu, Y. Y., Hou, J. F., ... & Hu, Y. C. (2014). Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets. Energy conversion and management, 80, 103-109. https://doi.org/10.1016/j.enconman.2014.01.016
  • George, M., Pandey, A. K., Abd Rahim, N., Tyagi, V. V., Shahabuddin, S., & Saidur, R. (2020). A novel polyaniline (PANI)/paraffin wax nano composite phase change material: Superior transition heat storage capacity, thermal conductivity and thermal reliability. Solar Energy, 204, 448-458. https://doi.org/10.1016/j.solener.2020.04.087
  • Huang, Z., Wang, C., Zhou, L., & Wu, C. (2021). Thermal conductivity enhancement and shape stability of phase-change materials using high-strength 3D graphene skeleton. Surfaces and Interfaces, 26, 101338. https://doi.org/10.1016/j.surfin.2021.101338
  • Javadi, F. S., Metselaar, H. S. C., & Ganesan, P. (2020). Performance improvement of solar thermal systems integrated with phase change materials (PCM), a review. Solar Energy, 206, 330-352. https://doi.org/10.1016/j.solener.2020.05.106
  • Jeng, H. A., & Swanson, J. (2006). Toxicity of metal oxide nanoparticles in mammalian cells. Journal of Environmental Science and Health Part A, 41(12), 2699-2711. https://doi.org/10.1080/10934520600966177
  • Jiang, G., Huang, J., Fu, Y., Cao, M., & Liu, M. (2016). Thermal optimization of composite phase change material/expanded graphite for Li-ion battery thermal management. Applied Thermal Engineering, 108, 1119-1125. https://doi.org/10.1016/j.applthermaleng.2016.07.197
  • Kaviarasu, C., & Prakash, D. (2016). Review on Phase Change Materials with Nanoparticle in Engineering Applications. Journal of Engineering Science & Technology Review, 9(4).
  • Kibria, M. A., Anisur, M. R., Mahfuz, M. H., Saidur, R., & Metselaar, I. H. S. C. (2015). A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy conversion and management, 95, 69-89. https://doi.org/10.1016/j.enconman.2015.02.028
  • Kuziel, A. W., Dzido, G., Turczyn, R., Jędrysiak, R. G., Kolanowska, A., Tracz, A., ... & Boncel, S. (2021). Ultra-long carbon nanotube-paraffin composites of record thermal conductivity and high phase change enthalpy among paraffin-based heat storage materials. Journal of Energy Storage, 36, 102396. https://doi.org/10.1016/j.est.2021.102396
  • Lin, S. C., & Al-Kayiem, H. H. (2016). Evaluation of copper nanoparticles–Paraffin wax compositions for solar thermal energy storage. Solar Energy, 132, 267-278. https://doi.org/10.1016/j.solener.2016.03.004
  • Luo, Y., Xiong, S., Huang, J., Zhang, F., Li, C., Min, Y., ... & Liu, Y. (2021). Preparation, characterization and performance of paraffin/sepiolite composites as novel shape-stabilized phase change materials for thermal energy storage. Solar Energy Materials and Solar Cells, 231, 111300. https://doi.org/10.1016/j.solmat.2021.111300
  • Mohamed, N. H., Soliman, F. S., El Maghraby, H., & Moustfa, Y. M. (2017). Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina: Energy storage. Renewable and Sustainable Energy Reviews, 70, 1052-1058. https://doi.org/10.1016/j.rser.2016.12.009
  • Nazari, M. A., Maleki, A., Assad, M. E. H., Rosen, M. A., Haghighi, A., Sharabaty, H., & Chen, L. (2021). A review of nanomaterial incorporated phase change materials for solar thermal energy storage. Solar Energy, 228, 725-743. https://doi.org/10.1016/j.solener.2021.08.051
  • Pamučar, D., & Ćirović, G. (2015). The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert systems with applications, 42(6), 3016-3028. https://doi.org/10.1016/j.eswa.2014.11.057
  • Park, S., Lee, Y. K., Jung, M., Kim, K. H., Chung, N., Ahn, E. K., ... & Lee, K. H. (2007). Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhalation toxicology, 19(sup1), 59-65. https://doi.org/10.1080/08958370701493282
  • Shahid, U. B., & Abdala, A. (2021). A critical review of phase change material composite performance through Figure-of-Merit analysis: Graphene vs Boron Nitride. Energy Storage Materials, 34, 365-387. https://doi.org/10.1016/j.ensm.2020.10.004
  • Sheng, N., Zhu, R., Dong, K., Nomura, T., Zhu, C., Aoki, Y., ... & Akiyama, T. (2019). Vertically aligned carbon fibers as supporting scaffolds for phase change composites with anisotropic thermal conductivity and good shape stability. Journal of Materials Chemistry A, 7(9), 4934-4940.6 https://doi.org/10.1039/C8TA11329G
  • Tony, M. A. (2021). Recent frontiers in solar energy storage via nanoparticles enhanced phase change materials: Succinct review on basics, applications, and their environmental aspects. Energy Storage, 3(4), e238. https://doi.org/10.1002/est2.238
  • Ulus, H. (2021). The impact of seawater aging on basalt/graphene nanoplatelet-epoxy composites: performance evaluating by Dynamic Mechanical Analysis (DMA) and short beam shear (sbs) tests. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 412-419. https://doi: 10.28948/ngumuh.791161
  • Wang, J., Xie, H., Guo, Z., Guan, L., & Li, Y. (2014). Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles. Applied Thermal Engineering, 73(2), 1541-1547. https://doi.org/10.1016/j.applthermaleng.2014.05.078
  • Wang, J., Li, Y., Zheng, D., Mikulčić, H., Vujanović, M., & Sundén, B. (2021). Preparation and thermophysical property analysis of nanocomposite phase change materials for energy storage. Renewable and Sustainable Energy Reviews, 151, 111541. https://doi.org/10.1016/j.rser.2021.111541
  • Wei, G., Wang, G., Xu, C., Ju, X., Xing, L., Du, X., & Yang, Y. (2018). Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews, 81, 1771-1786. https://doi.org/10.1016/j.rser.2017.05.271
  • Yang, K., Zhu, N., Chang, C., Wang, D., Yang, S., & Ma, S. (2018). A methodological concept for phase change material selection based on multi-criteria decision making (MCDM): A case study. Energy, 165, 1085-1096. https://doi.org/10.1016/j.energy.2018.10.022
  • Zavadskas, E. K., & Podvezko, V. (2016). Integrated determination of objective criteria weights in MCDM. International Journal of Information Technology & Decision Making, 15(02), 267-283. https://doi.org/10.1142/S0219622016500036
  • Zhao, B., Wang, Y., Wang, C., Zhu, R., Sheng, N., Zhu, C., & Rao, Z. (2021). Thermal conductivity enhancement and shape stabilization of phase change thermal storage material reinforced by combustion synthesized porous Al2O3. Journal of Energy Storage, 42, 103028. https://doi.org/10.1016/j.est.2021.103028

Prioritization of Inorganic Nanomaterials Used in Phase Change Materials by Multimoora Method

Year 2023, Volume: 15 Issue: 3, 153 - 165, 31.12.2023
https://doi.org/10.29137/umagd.1318413

Abstract

Phase Change Materials (PCM) provide renewable and sustainable energy, especially by storing renewable energy sources that are not always available and enabling them to be used when demanded. Since PCMs cannot meet the desired thermodynamic, kinetic, chemical and economic properties in thermal energy storage alone, they are supported by different nanomaterials. There are critical parameters for the selection of nanomaterials used to improve the properties of PCM, and in this study, it is aimed to prioritize inorganic nanomaterials. At this point, the Multi Criteria Decision Maker (MCDM) methodology is very useful. In this study, Multi-Objective Optimization Method Based on Ratio Analysis (MULTIMOORA) was used to prioritize 5 different inorganic nanomaterials (copper oxide, aluminum oxide, silver, titanium oxide and boron nitride) that can be used in PCMs. Six evaluation criteria were determined as melting point change, latent heat change, thermal conductivity change, pretreatment requirement, toxicity and cost. The criteria weights were determined by entropy (objective method) and ranking (subjective) methods, respectively. According to the weighting method of both criteria, the melting point change was determined as the most important criterion. According to MULTIMOORA results, boron nitride (BN) was found to be the most suitable inorganic nanomaterial to be added to PCMs.

Project Number

20ADP097

References

  • Al Ghossein, R. M., Hossain, M. S., & Khodadadi, J. M. (2017). Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based silver nanostructure-enhanced phase change materials for thermal energy storage. International Journal of Heat and Mass Transfer, 107, 697-711. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.059
  • Aydın, A. A. (2010). The synthesis and thermal properties of novel organic phase change materials (PhD thesis). İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği Ana Bilim Dalı
  • Cárdenas, B., & León, N. (2013). High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques. Renewable and sustainable energy reviews, 27, 724-737. https://doi.org/10.1016/j.rser.2013.07.028
  • Coetzee, D., Venkataraman, M., Militky, J., & Petru, M. (2020). Influence of nanoparticles on thermal and electrical conductivity of composites. Polymers, 12(4), 742. https://doi:10.3390/polym12040742
  • Das, D., Sharma, R. K., Saikia, P., & Rakshit, D. (2021). An integrated entropy-based multi-attribute decision-making model for phase change material selection and passive thermal management. Decision Analytics Journal, 1, 100011. https://doi.org/10.1016/j.dajour.2021.100011
  • Demir, G., & Arslan, R. (2022) Sensitivity Analysis in Multi-Criterion Decision-Making Problems. Ankara Hacı Bayram Veli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 24(3), 1025-1056. https://doi.org/10.1016/j.dajour.2021.100011
  • Fang, X., Fan, L. W., Ding, Q., Yao, X. L., Wu, Y. Y., Hou, J. F., ... & Hu, Y. C. (2014). Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets. Energy conversion and management, 80, 103-109. https://doi.org/10.1016/j.enconman.2014.01.016
  • George, M., Pandey, A. K., Abd Rahim, N., Tyagi, V. V., Shahabuddin, S., & Saidur, R. (2020). A novel polyaniline (PANI)/paraffin wax nano composite phase change material: Superior transition heat storage capacity, thermal conductivity and thermal reliability. Solar Energy, 204, 448-458. https://doi.org/10.1016/j.solener.2020.04.087
  • Huang, Z., Wang, C., Zhou, L., & Wu, C. (2021). Thermal conductivity enhancement and shape stability of phase-change materials using high-strength 3D graphene skeleton. Surfaces and Interfaces, 26, 101338. https://doi.org/10.1016/j.surfin.2021.101338
  • Javadi, F. S., Metselaar, H. S. C., & Ganesan, P. (2020). Performance improvement of solar thermal systems integrated with phase change materials (PCM), a review. Solar Energy, 206, 330-352. https://doi.org/10.1016/j.solener.2020.05.106
  • Jeng, H. A., & Swanson, J. (2006). Toxicity of metal oxide nanoparticles in mammalian cells. Journal of Environmental Science and Health Part A, 41(12), 2699-2711. https://doi.org/10.1080/10934520600966177
  • Jiang, G., Huang, J., Fu, Y., Cao, M., & Liu, M. (2016). Thermal optimization of composite phase change material/expanded graphite for Li-ion battery thermal management. Applied Thermal Engineering, 108, 1119-1125. https://doi.org/10.1016/j.applthermaleng.2016.07.197
  • Kaviarasu, C., & Prakash, D. (2016). Review on Phase Change Materials with Nanoparticle in Engineering Applications. Journal of Engineering Science & Technology Review, 9(4).
  • Kibria, M. A., Anisur, M. R., Mahfuz, M. H., Saidur, R., & Metselaar, I. H. S. C. (2015). A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy conversion and management, 95, 69-89. https://doi.org/10.1016/j.enconman.2015.02.028
  • Kuziel, A. W., Dzido, G., Turczyn, R., Jędrysiak, R. G., Kolanowska, A., Tracz, A., ... & Boncel, S. (2021). Ultra-long carbon nanotube-paraffin composites of record thermal conductivity and high phase change enthalpy among paraffin-based heat storage materials. Journal of Energy Storage, 36, 102396. https://doi.org/10.1016/j.est.2021.102396
  • Lin, S. C., & Al-Kayiem, H. H. (2016). Evaluation of copper nanoparticles–Paraffin wax compositions for solar thermal energy storage. Solar Energy, 132, 267-278. https://doi.org/10.1016/j.solener.2016.03.004
  • Luo, Y., Xiong, S., Huang, J., Zhang, F., Li, C., Min, Y., ... & Liu, Y. (2021). Preparation, characterization and performance of paraffin/sepiolite composites as novel shape-stabilized phase change materials for thermal energy storage. Solar Energy Materials and Solar Cells, 231, 111300. https://doi.org/10.1016/j.solmat.2021.111300
  • Mohamed, N. H., Soliman, F. S., El Maghraby, H., & Moustfa, Y. M. (2017). Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina: Energy storage. Renewable and Sustainable Energy Reviews, 70, 1052-1058. https://doi.org/10.1016/j.rser.2016.12.009
  • Nazari, M. A., Maleki, A., Assad, M. E. H., Rosen, M. A., Haghighi, A., Sharabaty, H., & Chen, L. (2021). A review of nanomaterial incorporated phase change materials for solar thermal energy storage. Solar Energy, 228, 725-743. https://doi.org/10.1016/j.solener.2021.08.051
  • Pamučar, D., & Ćirović, G. (2015). The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert systems with applications, 42(6), 3016-3028. https://doi.org/10.1016/j.eswa.2014.11.057
  • Park, S., Lee, Y. K., Jung, M., Kim, K. H., Chung, N., Ahn, E. K., ... & Lee, K. H. (2007). Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhalation toxicology, 19(sup1), 59-65. https://doi.org/10.1080/08958370701493282
  • Shahid, U. B., & Abdala, A. (2021). A critical review of phase change material composite performance through Figure-of-Merit analysis: Graphene vs Boron Nitride. Energy Storage Materials, 34, 365-387. https://doi.org/10.1016/j.ensm.2020.10.004
  • Sheng, N., Zhu, R., Dong, K., Nomura, T., Zhu, C., Aoki, Y., ... & Akiyama, T. (2019). Vertically aligned carbon fibers as supporting scaffolds for phase change composites with anisotropic thermal conductivity and good shape stability. Journal of Materials Chemistry A, 7(9), 4934-4940.6 https://doi.org/10.1039/C8TA11329G
  • Tony, M. A. (2021). Recent frontiers in solar energy storage via nanoparticles enhanced phase change materials: Succinct review on basics, applications, and their environmental aspects. Energy Storage, 3(4), e238. https://doi.org/10.1002/est2.238
  • Ulus, H. (2021). The impact of seawater aging on basalt/graphene nanoplatelet-epoxy composites: performance evaluating by Dynamic Mechanical Analysis (DMA) and short beam shear (sbs) tests. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 412-419. https://doi: 10.28948/ngumuh.791161
  • Wang, J., Xie, H., Guo, Z., Guan, L., & Li, Y. (2014). Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles. Applied Thermal Engineering, 73(2), 1541-1547. https://doi.org/10.1016/j.applthermaleng.2014.05.078
  • Wang, J., Li, Y., Zheng, D., Mikulčić, H., Vujanović, M., & Sundén, B. (2021). Preparation and thermophysical property analysis of nanocomposite phase change materials for energy storage. Renewable and Sustainable Energy Reviews, 151, 111541. https://doi.org/10.1016/j.rser.2021.111541
  • Wei, G., Wang, G., Xu, C., Ju, X., Xing, L., Du, X., & Yang, Y. (2018). Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews, 81, 1771-1786. https://doi.org/10.1016/j.rser.2017.05.271
  • Yang, K., Zhu, N., Chang, C., Wang, D., Yang, S., & Ma, S. (2018). A methodological concept for phase change material selection based on multi-criteria decision making (MCDM): A case study. Energy, 165, 1085-1096. https://doi.org/10.1016/j.energy.2018.10.022
  • Zavadskas, E. K., & Podvezko, V. (2016). Integrated determination of objective criteria weights in MCDM. International Journal of Information Technology & Decision Making, 15(02), 267-283. https://doi.org/10.1142/S0219622016500036
  • Zhao, B., Wang, Y., Wang, C., Zhu, R., Sheng, N., Zhu, C., & Rao, Z. (2021). Thermal conductivity enhancement and shape stabilization of phase change thermal storage material reinforced by combustion synthesized porous Al2O3. Journal of Energy Storage, 42, 103028. https://doi.org/10.1016/j.est.2021.103028
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Multiple Criteria Decision Making
Journal Section Articles
Authors

Hasret Akgün 0000-0002-2232-0713

Ece Turan 0000-0002-7502-4862

Aysun Özkan 0000-0003-1036-7570

Zerrin Günkaya 0000-0002-7553-9129

Mufide Banar 0000-0003-2795-6208

Project Number 20ADP097
Publication Date December 31, 2023
Submission Date June 26, 2023
Published in Issue Year 2023 Volume: 15 Issue: 3

Cite

APA Akgün, H., Turan, E., Özkan, A., Günkaya, Z., et al. (2023). Faz Değişim Malzemelerinde Kullanılan İnorganik Nanomalzemelerin Multımoora Yöntemiyle Önceliklendirilmesi. International Journal of Engineering Research and Development, 15(3), 153-165. https://doi.org/10.29137/umagd.1318413

All Rights Reserved. Kırıkkale University, Faculty of Engineering.