Research Article
BibTex RIS Cite

Hekzaklorosiklotrifosfazen ile Yeni Bir N-İkame Edilmiş Aminoalkol Türevinin Tasarımı ve Sentezi

Year 2023, Volume: 15 Issue: 3, 74 - 81, 31.12.2023
https://doi.org/10.29137/umagd.1318985

Abstract

Hekzaklorosiklotrifosfazen, N3P3Cl6, aminler, alkoller, vb., nükleofiller ile sübstitüsyon reaksiyonları veren halkalı bileşiklerdir. Siklotrifosfazenin dioller, diaminler ve aminoalkoller gibi bifonksiyonel nükleofillerle nükleofilik sübstitüsyon reaksiyonları on yıllardır yoğun bir çalışma konusu olmuştur. Fosfazenlerdeki kararlı P=N bağı nedeniyle, fosfazen türevleri ısıya, radyasyona, yanmaya, indirgeyici ve oksitleyici maddelere karşı direnç gibi özelliklere sahip olabilir. Siklofosfazen türevleri genellikle biyolojik uyumluluğa sahiptir ve toksik olmayan küçük moleküllere ayrışır, bu nedenle biyolojik aktiviteler ve DNA etkileşimleri için avantajlıdır. Bu nedenle siklik fosfazen bileşiklerinin özellikleri, antikanserojen, antibakteriyel ve DNA etkileşimleri halen üzerinde çalışılan konulardır.
N/O donör tip bifonksiyonel N-sübstitüe aminoalkollerin hekzaklorosiklotrifosfazen ile kondenzasyon reaksiyonları incelendi ve spiro-siklik tetraklorosiklotrifosfazen türevleri (1 - 4) hazırlandı. Tüm bileşikleri karakterize etmek için element analizleri, ESI-MS, FT-Raman, FTIR ve NMR spektroskopi teknikleri kullanıldı.

References

  • Allcock, H. R., Austin, P., & Rakowsky, T. (1981). Diazo coupling reactions with poly (organophosphazenes). Macromolecules, 14(6), 1622-1625.
  • Asmafiliz, N., Kılıc, Z., Öztürk, A., Hökelek, T., Koc, L. Y., Açık, L., Kısa, O. z. l., Albay, A., Üstündağ, Z., & Solak, A. O. (2009). Phosphorus− Nitrogen Compounds. 18. Syntheses, stereogenic properties, structural and electrochemical investigations, biological activities, and DNA interactions of new spirocyclic Mono-and bisferrocenylphosphazene derivatives. Inorganic chemistry, 48(21), 10102-10116.
  • Begeç, S. (2022). Synthesis and structural characterization of N, N-spiro cyclotriphosphazene derivatives with one stereogenic center. Phosphorus, Sulfur, and Silicon and the Related Elements, 1-6.
  • Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A., & Shaw, R. A. (2007). A spiro to ansa rearrangement in cyclotriphosphazene derivatives. Dalton Transactions(26), 2792-2801.
  • Chandrasekhar, V., Krishnamurthy, S. S., Manohar, H., Murthy, A. V., Shaw, R. A., & Woods, M. (1984). Studies of phosphazenes. Part 17. Reaction of hexachlorocyclotriphosphazatriene with N-methylethanolamine: X-ray crystal structure of a dispirocyclotriphosphazatriene, N 3 P 3 (NMeCH 2 CH 2 O) 2 Cl 2. Journal of the Chemical Society, Dalton Transactions(4), 621-625.
  • Coles, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., Kılıç, A., Shaw, R. A., Şahin, Ş., Uslu, A., & Yeşilot, S. (2004). Stereogenic properties of 1, 3-disubstituted derivatives of cyclotriphosphazene: cis (meso) and trans (racemic) isomers. Inorganic Chemistry Communications, 7(5), 657-661.
  • Dagan, I. D., & Lowden, C. T. (2003). Solution-phase parallel synthesis of substituted 1, 2-ethyl and 1, 3-propyl diamines. Tetrahedron letters, 44(41), 7575-7577.
  • Eçik, E. T., Beşli, S., Çiftçi, G. Y., Davies, D. B., Kılıç, A., & Yuksel, F. (2012). Stereo-selectivity in a cyclotriphosphazene derivative bearing an exocyclic P–O moiety. Dalton Transactions, 41(22), 6715-6725.
  • Gladstone, J. H., & Holmes, J. (1864). XXVII.—On chlorophosphuret of nitrogen, and its products of decomposition. Journal of the Chemical Society, 17, 225-237.
  • Işıklan, M., Asmafiliz, N., Ozalp, E. E., Ilter, E. E., Kılıç, Z., Çoşut, B. n., Yesilot, S., Kılıç, A., Öztürk, A., & Hokelek, T. (2010). Phosphorus− nitrogen compounds. 21. syntheses, structural investigations, biological activities, and DNA interactions of new N/O spirocyclic phosphazene derivatives. The NMR behaviors of chiral phosphazenes with stereogenic centers upon the addition of chiral solvating agents. Inorganic chemistry, 49(15), 7057-7071.
  • Işıklan, M., Sayın, L., Sonkaya, Ö., Hökelek, T., Türk, M., & Oğuztüzün, S. (2016). Synthesis, structural characterization, and cytotoxic activity of new spirocyclic octachlorocyclotetraphosphazenes. Phosphorus, Sulfur, and Silicon and the Related Elements, 191(9), 1216-1222.
  • Işıklan, M., Sonkaya, Ö., Çoşut, B., Yeşilot, S., & Hökelek, T. (2010). Microwave-assisted and conventional synthesis and stereogenic properties of monospirocyclotriphosphazene derivatives. Polyhedron, 29(6), 1612-1618.
  • Işıklan, M., Sonkaya, Ö., & Hökelek, T. (2013a). 2-(4-Methylpyridin-2-yl)-4′, 4′, 6′, 6′-tetrakis (pyrrolidin-1-yl)-1H, 2H-spiro [naphtho [1, 2-e][1, 3, 2] oxazaphosphinine-3, 2′-[1, 3, 5, 2, 4, 6] triazatriphosphinine]. Acta Crystallographica Section E: Structure Reports Online, 69(6), o994-o995.
  • Işıklan, M., Sonkaya, Ö., & Hökelek, T. (2013b). 4′, 4′, 6′, 6′-Tetrachloro-2-(6-methylpyridin-2-yl)-1H, 2H-spiro [naphtho [1, 2-e][1, 3, 2] oxazaphosphinine-3, 2′-[1, 3, 5, 2, 4, 6] triazatriphosphinine]. Acta Crystallographica Section E: Structure Reports Online, 69(6), o861-o862.
  • Işıklan, M., Yıldırım, E. K., Atiş, M., Sonkaya, Ö., & Çoşut, B. (2016). Structural and computational characterization of 4′, 4′, 6′, 6′-tetrachloro-3-(2-methoxyethyl)-3H, 4H-spiro-1, 3, 2-benzoxaza phosphinine-2, 2′-[1, 3, 5, 2, 4, 6] triazatriphosphinine. Journal of Molecular Structure, 1117, 276-282.
  • Jiménez, J., Laguna, A., Molter, A., Serrano, J. L., Barberá, J., & Oriol, L. (2011). Supermolecular Liquid Crystals with a Six‐Armed Cyclotriphosphazene Core: From Columnar to Cubic Phases. Chemistry–A European Journal, 17(3), 1029-1039.
  • Mehta, V. P., & Van der Eycken, E. V. (2011). Microwave-assisted C–C bond forming cross-coupling reactions: An overview. Chemical Society Reviews, 40(10), 4925-4936.
  • Okumuş, A., Elmas, G., Kilic, Z., Ramazanoğlu, N., Acik, L., Türk, M., & Akca, G. (2017). The reactions of N $ _ {3} $ P $ _ {3} $ Cl $ _ {6} $ with monodentate and bidentate ligands: the syntheses and structural characterizations, in vitro antimicrobial activities, and DNA interactions of 4-fluorobenzyl (N/O) spirocyclotriphosphazenes. Turkish Journal of Chemistry, 41(4), 525-547.
  • Omotowa, B. A., Phillips, B. S., Zabinski, J. S., & Shreeve, J. n. M. (2004). Phosphazene-based ionic liquids: synthesis, temperature-dependent viscosity, and effect as additives in water lubrication of silicon nitride ceramics. Inorganic chemistry, 43(17), 5466-5471.
  • Perrin, D. D., Armarego, W. L., & Perrin, D. R. (1966). Purification of laboratory chemicals.
  • Reynes, M., Dautel, O. J., Virieux, D., Flot, D., & Moreau, J. J. (2011). Synthesis and crystal structure of tris (2, 3-triphenylenedioxy) cyclotriphosphazene: a new clathration system. CrystEngComm, 13(20), 6050-6056.
  • Rose, H. (1834). Ueber eine Verbindung des Phosphors mit dem Stickstoff. Annalen der Pharmacie, 11(2), 129-139.
  • Shin, Y. J., Ham, Y. R., Kim, S. H., Lee, D. H., Kim, S. B., Park, C. S., Yoo, Y. M., Kim, J. G., Kwon, S. H., & Shin, J. S. (2010). Application of cyclophosphazene derivatives as flame retardants for ABS. Journal of industrial and Engineering Chemistry, 16(3), 364-367.
  • Tümer, Y., Koç, L. Y., Asmafiliz, N., Kılıç, Z., Hökelek, T., Soltanzade, H., Açık, L., Yola, M. L., & Solak, A. O. (2015). Phosphorus–nitrogen compounds: part 30. syntheses and structural investigations, antimicrobial and cytotoxic activities and DNA interactions of vanillinato-substituted NN or NO spirocyclic monoferrocenyl cyclotriphosphazenes. JBIC Journal of Biological Inorganic Chemistry, 20, 165-178.

Design and Synthesis of A Novel N-Substituted Aminoalcohol Derivative with Hexachlorocyclotriphosphazene

Year 2023, Volume: 15 Issue: 3, 74 - 81, 31.12.2023
https://doi.org/10.29137/umagd.1318985

Abstract

Hexachlorocyclotriphosphazene, N3P3Cl6, are cyclical and give substitution reactions with amines, alcohols, etc., nucleophiles. Nucleophilic substitution reactions of cyclotriphosphazene with bifunctional nucleophiles such as diols, diamines and aminoalcohols have been a subject of intense study over decades. Due to the stable P=N bond in phosphazenes, phosphazene derivatives can have properties such as resistance to heat, radiation, combustion, reducing and oxidizing substances. Cyclophosphazene derivatives usually have biological compatibility and degrade into non-toxic small molecules, thus are advantageous to biological activities and DNA interactions. For this reason, the properties of cyclic phosphazene compounds, anticarcinogenic, antibacterial and DNA interactions are currently studied topics.
The condensation reactions of N/O donor type bifunctional N-substituted aminoalcohols with hexachlorocyclotriphosphazene were investigated and the spiro-cyclic tetrachlorocyclotriphosphazene derivatives (1 - 4) were prepared. Elemental analyses, ESI-MS, FT-Raman, FTIR and NMR spectroscopy techniques were employed to characterize all of the compounds.

References

  • Allcock, H. R., Austin, P., & Rakowsky, T. (1981). Diazo coupling reactions with poly (organophosphazenes). Macromolecules, 14(6), 1622-1625.
  • Asmafiliz, N., Kılıc, Z., Öztürk, A., Hökelek, T., Koc, L. Y., Açık, L., Kısa, O. z. l., Albay, A., Üstündağ, Z., & Solak, A. O. (2009). Phosphorus− Nitrogen Compounds. 18. Syntheses, stereogenic properties, structural and electrochemical investigations, biological activities, and DNA interactions of new spirocyclic Mono-and bisferrocenylphosphazene derivatives. Inorganic chemistry, 48(21), 10102-10116.
  • Begeç, S. (2022). Synthesis and structural characterization of N, N-spiro cyclotriphosphazene derivatives with one stereogenic center. Phosphorus, Sulfur, and Silicon and the Related Elements, 1-6.
  • Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A., & Shaw, R. A. (2007). A spiro to ansa rearrangement in cyclotriphosphazene derivatives. Dalton Transactions(26), 2792-2801.
  • Chandrasekhar, V., Krishnamurthy, S. S., Manohar, H., Murthy, A. V., Shaw, R. A., & Woods, M. (1984). Studies of phosphazenes. Part 17. Reaction of hexachlorocyclotriphosphazatriene with N-methylethanolamine: X-ray crystal structure of a dispirocyclotriphosphazatriene, N 3 P 3 (NMeCH 2 CH 2 O) 2 Cl 2. Journal of the Chemical Society, Dalton Transactions(4), 621-625.
  • Coles, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., Kılıç, A., Shaw, R. A., Şahin, Ş., Uslu, A., & Yeşilot, S. (2004). Stereogenic properties of 1, 3-disubstituted derivatives of cyclotriphosphazene: cis (meso) and trans (racemic) isomers. Inorganic Chemistry Communications, 7(5), 657-661.
  • Dagan, I. D., & Lowden, C. T. (2003). Solution-phase parallel synthesis of substituted 1, 2-ethyl and 1, 3-propyl diamines. Tetrahedron letters, 44(41), 7575-7577.
  • Eçik, E. T., Beşli, S., Çiftçi, G. Y., Davies, D. B., Kılıç, A., & Yuksel, F. (2012). Stereo-selectivity in a cyclotriphosphazene derivative bearing an exocyclic P–O moiety. Dalton Transactions, 41(22), 6715-6725.
  • Gladstone, J. H., & Holmes, J. (1864). XXVII.—On chlorophosphuret of nitrogen, and its products of decomposition. Journal of the Chemical Society, 17, 225-237.
  • Işıklan, M., Asmafiliz, N., Ozalp, E. E., Ilter, E. E., Kılıç, Z., Çoşut, B. n., Yesilot, S., Kılıç, A., Öztürk, A., & Hokelek, T. (2010). Phosphorus− nitrogen compounds. 21. syntheses, structural investigations, biological activities, and DNA interactions of new N/O spirocyclic phosphazene derivatives. The NMR behaviors of chiral phosphazenes with stereogenic centers upon the addition of chiral solvating agents. Inorganic chemistry, 49(15), 7057-7071.
  • Işıklan, M., Sayın, L., Sonkaya, Ö., Hökelek, T., Türk, M., & Oğuztüzün, S. (2016). Synthesis, structural characterization, and cytotoxic activity of new spirocyclic octachlorocyclotetraphosphazenes. Phosphorus, Sulfur, and Silicon and the Related Elements, 191(9), 1216-1222.
  • Işıklan, M., Sonkaya, Ö., Çoşut, B., Yeşilot, S., & Hökelek, T. (2010). Microwave-assisted and conventional synthesis and stereogenic properties of monospirocyclotriphosphazene derivatives. Polyhedron, 29(6), 1612-1618.
  • Işıklan, M., Sonkaya, Ö., & Hökelek, T. (2013a). 2-(4-Methylpyridin-2-yl)-4′, 4′, 6′, 6′-tetrakis (pyrrolidin-1-yl)-1H, 2H-spiro [naphtho [1, 2-e][1, 3, 2] oxazaphosphinine-3, 2′-[1, 3, 5, 2, 4, 6] triazatriphosphinine]. Acta Crystallographica Section E: Structure Reports Online, 69(6), o994-o995.
  • Işıklan, M., Sonkaya, Ö., & Hökelek, T. (2013b). 4′, 4′, 6′, 6′-Tetrachloro-2-(6-methylpyridin-2-yl)-1H, 2H-spiro [naphtho [1, 2-e][1, 3, 2] oxazaphosphinine-3, 2′-[1, 3, 5, 2, 4, 6] triazatriphosphinine]. Acta Crystallographica Section E: Structure Reports Online, 69(6), o861-o862.
  • Işıklan, M., Yıldırım, E. K., Atiş, M., Sonkaya, Ö., & Çoşut, B. (2016). Structural and computational characterization of 4′, 4′, 6′, 6′-tetrachloro-3-(2-methoxyethyl)-3H, 4H-spiro-1, 3, 2-benzoxaza phosphinine-2, 2′-[1, 3, 5, 2, 4, 6] triazatriphosphinine. Journal of Molecular Structure, 1117, 276-282.
  • Jiménez, J., Laguna, A., Molter, A., Serrano, J. L., Barberá, J., & Oriol, L. (2011). Supermolecular Liquid Crystals with a Six‐Armed Cyclotriphosphazene Core: From Columnar to Cubic Phases. Chemistry–A European Journal, 17(3), 1029-1039.
  • Mehta, V. P., & Van der Eycken, E. V. (2011). Microwave-assisted C–C bond forming cross-coupling reactions: An overview. Chemical Society Reviews, 40(10), 4925-4936.
  • Okumuş, A., Elmas, G., Kilic, Z., Ramazanoğlu, N., Acik, L., Türk, M., & Akca, G. (2017). The reactions of N $ _ {3} $ P $ _ {3} $ Cl $ _ {6} $ with monodentate and bidentate ligands: the syntheses and structural characterizations, in vitro antimicrobial activities, and DNA interactions of 4-fluorobenzyl (N/O) spirocyclotriphosphazenes. Turkish Journal of Chemistry, 41(4), 525-547.
  • Omotowa, B. A., Phillips, B. S., Zabinski, J. S., & Shreeve, J. n. M. (2004). Phosphazene-based ionic liquids: synthesis, temperature-dependent viscosity, and effect as additives in water lubrication of silicon nitride ceramics. Inorganic chemistry, 43(17), 5466-5471.
  • Perrin, D. D., Armarego, W. L., & Perrin, D. R. (1966). Purification of laboratory chemicals.
  • Reynes, M., Dautel, O. J., Virieux, D., Flot, D., & Moreau, J. J. (2011). Synthesis and crystal structure of tris (2, 3-triphenylenedioxy) cyclotriphosphazene: a new clathration system. CrystEngComm, 13(20), 6050-6056.
  • Rose, H. (1834). Ueber eine Verbindung des Phosphors mit dem Stickstoff. Annalen der Pharmacie, 11(2), 129-139.
  • Shin, Y. J., Ham, Y. R., Kim, S. H., Lee, D. H., Kim, S. B., Park, C. S., Yoo, Y. M., Kim, J. G., Kwon, S. H., & Shin, J. S. (2010). Application of cyclophosphazene derivatives as flame retardants for ABS. Journal of industrial and Engineering Chemistry, 16(3), 364-367.
  • Tümer, Y., Koç, L. Y., Asmafiliz, N., Kılıç, Z., Hökelek, T., Soltanzade, H., Açık, L., Yola, M. L., & Solak, A. O. (2015). Phosphorus–nitrogen compounds: part 30. syntheses and structural investigations, antimicrobial and cytotoxic activities and DNA interactions of vanillinato-substituted NN or NO spirocyclic monoferrocenyl cyclotriphosphazenes. JBIC Journal of Biological Inorganic Chemistry, 20, 165-178.
There are 24 citations in total.

Details

Primary Language English
Subjects Bioengineering (Other)
Journal Section Articles
Authors

Ömer Sonkaya 0000-0001-9432-8338

Publication Date December 31, 2023
Submission Date June 23, 2023
Published in Issue Year 2023 Volume: 15 Issue: 3

Cite

APA Sonkaya, Ö. (2023). Design and Synthesis of A Novel N-Substituted Aminoalcohol Derivative with Hexachlorocyclotriphosphazene. International Journal of Engineering Research and Development, 15(3), 74-81. https://doi.org/10.29137/umagd.1318985

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.