Research Article
BibTex RIS Cite

Aşınma Test Cihazından Alınan Veriyi İşleyen Bir Program Geliştirilmesi

Year 2024, Volume: 16 Issue: 1, 267 - 278, 31.01.2024
https://doi.org/10.29137/umagd.1402219

Abstract

Bir cihazdan verilerin alınıp işlenmesi için mikrodenetleyicilere ihtiyaç duyulur. Mikrodenetleyiciler evlerde, ofislerde ve araştırma ortamlarında yaygın kullanım alanı bulmuştur. Mikrodenetleyicileri programlamak için birçok sistem mevcut olsa da, Arduino'nun bu konuda daha yaygın olduğu söylenebilir. Açık kaynaklı bir donanım ve yazılıma sahip olması ve kullanıcı etkileşimli topluluğu olan Arduino, 2005 yılından bu yana mikro denetleyici tabanlı Arduino kartları üretmektedir. Literatürde Arduino ile tasarlanan birçok sistem vardır. Bu çalışmada ise Arduino (Nano) geliştirme kartı kullanılarak, Sürtünme ve Aşınma Test Cihazı’nın analog sinyal çıkışlarından verilerin alınıp işlenilmesi amaçlanmıştır. Arduino ile bilgisayar arasında verilerin aktarımı ve işlenmesi için Object Pascal dilinde derleyicinin entegre olduğu, açık kaynak kodlu Lazarus uygulaması kullanılmıştır.

Aşınma sonucu makine parçalarında yalnızca kütle kaybı değil, boyutsal değişimler ve yüzey hasarları da oluşabilir. Bu nedenle aşınma, üretimin sürekliliği ve kalitesi bakımından oldukça önem arz etmektedir. Aşınma miktarını en aza indirmek için, aşınmaya neden olan parametrelerin incelenmesi gerekmektedir. Bu nedenle, geliştirilen program aşınma parametrelerinin incelenmesi açısından oldukça önemlidir.

References

  • Akar, F., Aslay, F., & Ceylan, Y. (2018). Arduino ile Uzaktan Switch Konfigürasyonu Yönetimi Tasarımı. Erzincan University Journal of Science and Technology, 11(3):571-575. doi:10.18185/erzifbed.422928
  • Arrizabalaga, J. H., Simmons, A. D., & Nollert, M. U. (2017). Fabrication of an economical Arduino-based uniaxial tensile tester. Davis, J.R. (ed.) (2001). Principles of Friction and Wear, Surface engineering for corrosion and wear resistance. ASM international, Ohio.
  • Bayer, R. J. (2004). Terminology and Classifications, Mechanical Wear Fundamentals and Testing, Revised and Expanded. Marcel Dekker Inc., 1-5, New York, USA.
  • Buckley, D. H. (1981). Chapter 7: Wear, Surface effects in adhesion, friction, wear, and lubrication. Elsevier Scientific Publishing Company, 429-509, Amsterdam, Netherlands.
  • Çetinel, H., Özaydın, D. (2022). Wear Behavior of Boronized Fe-Based Mmc Produced by Powder Metallurgy. SSRN Electronic Journal.
  • Dipova, N. (2017). Design of low cost and innovative data acqusition in soil mechanics Testing using open source hardware. The Eurasia Proceedings of Science Technology Engineering and Mathematics, (1), 104-110.
  • Dular, M., Požar, T., Zevnik, J., Petkovšek, R. (2019). High speed observation of damage created by a collapse of a single cavitation bubble. Wear, 418–419(July 2018), 13–23.
  • Famularo, N., Kholod, Y., & Kosenkov, D. (2016). Integrating chemistry laboratory instrumentation into the industrial internet: building, programming, and experimenting with an automatic titrator. Journal of Chemical Education, 93(1), 175-181.
  • Fang, H., Xu, F., Zhang, G. (2020). Investigation of Dry Sliding Wear Behavior of Pack Boriding Fe-Based Powder Metallurgy. Integrated Ferroelectrics, 208(1), 67–82.
  • Günen, A., Keddam, M., Erdoğan, A., Karakaş, M. S. (2022). Pack-Boriding of Monel 400: Microstructural Characterization and Boriding Kinetics. Metals and Materials International, 28(8), 1851–1863.
  • Güngör, K. (2016). Sinterlenmiş bronz esaslı kaymalı yataklarda polimer kullanımının tribolojik özelliklere etkisi. Doktora Tezi, Sakarya Üniversitesi, Sakarya.
  • Güven, Y., Coşgun, E., Kocaoğlu, S., Gezici, H., & Yılmazlar, E. (2017). Understanding the concept of microcontroller based systems to choose the best hardware for applications, Res. Inventy Int. J. Eng. Sci. 7 (38).
  • Halling, J. (1978). Principles of Tribology. The Macmillan Press Ltd, UK.
  • Hardell, J., Yousfi, A., Lund, M., Pelcastre, L., Prakash, B. (2014). Abrasive wear behaviour of hardened high strength boron steel. Tribology-Materials, Surfaces & Interfaces, 8(2), 90-97.
  • Hemeda, S. G., Aboukarima, A. M., & Minyawi, M. (2017). Developing a logging unit for measuring and recording power data using Arduino board. Misr Journal of Agricultural Engineering, 34(4), 2053-2072.
  • Hernández-Rodríguez, E., González-Rivero, R. A., Schalm, O., Martínez, A., Hernández, L., Alejo-Sánchez, D., ... & Jacobs, W. (2023). Reliability Testing of a Low-Cost, Multi-Purpose Arduino-Based Data Logger Deployed in Several Applications Such as Outdoor Air Quality, Human Activity, Motion, and Exhaust Gas Monitoring. Sensors, 23(17), 7412.
  • Hutchings, I., Shipway, P. (2016). Chapter 5: Sliding Wear, Friction and Wear of Engineering Materials Second Edition, Elsevier Ltd, 107-164, Butterworth-Heinemann.
  • Jarkovsky, R., & Rokitanského, C. (2018). Testing device for tensile test based on Arduino. WSEAS Transactions on Systems and Control Archive, 13, 568-572.
  • Kondaveeti, H. K., Kumaravelu, N. K., Vanambathina, S. D., Mathe, S. E., & Vappangi, S. (2021). A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations. Computer Science Review, 40, 100364.
  • Kubínová, S., & Šlégr, J. (2015). ChemDuino: Adapting Arduino for low-cost chemical measurements in lecture and laboratory. López-Vargas, A., Fuentes, M., García, M. V., & Muñoz-Rodríguez, F. J. (2019). Low-Cost datalogger intended for remote monitoring of solar photovoltaic standalone systems based on Arduino™. IEEE Sensors Journal, 19(11), 4308-4320.
  • Kurgan, N. (2020). MAK453 - Triboloji Ders Notları. Ondokuzmayıs Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü.
  • McClain, R. L. (2014). Construction of a Photometer as an Instructional Tool for Electronics and Instrumentation. Journal of Chemical Education, 91(5), 747-750.
  • Neale, M. J., Gee, M. (2001). Chapter 2: Industrial Wear Problems, Guide to Wear Problems and Testing for Industry, William Andrew Incorporated, 3-31, New York, USA.
  • Rafiquzzaman, M. (2011). Microcontroller Theory and Applications with the PIC18F, 1st. ed., Wiley Publishing, 2011. Schultz, B.G., & van Vugt, F.T. (2016). Tap Arduino: An Arduino microcontroller for low-latency auditory feedback in sensorimotor synchronization experiments. Behav. Res. 48:1591–1607. doi: 10.3758/s13428-015-0671-3
  • Selçuk, B. (1994). Borlanmış AISI 1020 ve 5115 çeliklerinin sürtünme ve aşınma davranışlarının incelenmesi. Doktora Tezi. Erciyes Üniversitesi, Kayseri.
  • Shibe, V., Chawla, V. (2014). A Review of Surface Modification Techniques in Enhancing the Erosion Resistance of Engineering Components. International Journal of Research in Mechanical Engineering & Technology, 4, 2249-5762.
  • Stefanov, B. I., Lebrun, D., Mattsson, A., Granqvist, C. G., & Österlund, L. (2015). Demonstrating online monitoring of air pollutant photodegradation in a 3D printed gas-phase photocatalysis reactor. Journal of Chemical Education, 92(4), 678-682.
  • Swain, B., Bhuyan, S., Behera, R., Mohapatra, S. S., Behera, A. (2020). Wear: A Serious Problem in Industry. Patnaik, A., Singh, T., Kukshal, V. (Ed.), Tribology in Materials and Manufacturing. IntechOpen.
  • Upadhyay, R. K., Kumaraswamidhas, L. A. (2018). Chapter 11: Bearing failure issues and corrective measures through surface engineering, Makhlouf, A. S. H., Aliofkhazraei M. (Ed.), Handbook of Materials Failure Analysis. Elsevier Ltd, 209–233, Butterworth-Heinemann.
  • Url-1 http://www.lazarus-ide.org/index.php?page=features Erişim: 15 Ekim 2023
  • Varacha, P., Mastorakis, N., Jasek, R., Pospisilik, M., Chramcov, B., & Samek, D. (2012). Technical devices for supervising of a household via interned based on Arduino microcontroller. Advances in Applied Information Science, WSEAS Press, ss 252–257.
  • Wen, S., & Huang, P. (2012). Part II Friction And Wear, Principles of tribology. John Wiley & Sons (Asia) Pte Ltd, Tsingua University Press, China.
  • Yücel, A. (2015). Bor karbür takviyeli metal matrisli kompozitlerden kam üretiminin araştırılması. Doktora Tezi. Sivas Cumhuriyet Üniversitesi, Sivas.
  • Zariatin, D. L., Kurniawan, Y., & Afika, N. R. (2023). Development of Data Acquisition System on an Arduino-Based Tensile Test Machine for Composite Materials. Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa dan Inovasi, 331-340.

Software Development for Processing Data from the Wear Testing Machine

Year 2024, Volume: 16 Issue: 1, 267 - 278, 31.01.2024
https://doi.org/10.29137/umagd.1402219

Abstract

Microcontrollers are needed to receive and process data from a device. Microcontrollers have found widespread use in homes, offices and research environments. Although there are many systems available for programming microcontrollers, Arduino can be said to be more common in this regard. Arduino, which has open source hardware and software and a user interactive community, has been producing microcontroller-based Arduino boards since 2005. There are many systems designed with Arduino in the literature. In this study, it is aimed to receive and process data from the analog signal outputs of the Friction and Wear Testing Machine by using the Arduino (Nano) development board. To transfer and process data between Arduino and the computer, the open source Lazarus application, in which the Object Pascal language compiler is integrated, was used.

As a result of wear, not only mass loss but also dimensional changes and surface damage may occur in machine parts. For this reason, wear is very important for the continuity and quality of production. In order to minimize the amount of wear, the parameters that cause wear must be examined. Therefore, the developed program is very important for examining wear parameters.

References

  • Akar, F., Aslay, F., & Ceylan, Y. (2018). Arduino ile Uzaktan Switch Konfigürasyonu Yönetimi Tasarımı. Erzincan University Journal of Science and Technology, 11(3):571-575. doi:10.18185/erzifbed.422928
  • Arrizabalaga, J. H., Simmons, A. D., & Nollert, M. U. (2017). Fabrication of an economical Arduino-based uniaxial tensile tester. Davis, J.R. (ed.) (2001). Principles of Friction and Wear, Surface engineering for corrosion and wear resistance. ASM international, Ohio.
  • Bayer, R. J. (2004). Terminology and Classifications, Mechanical Wear Fundamentals and Testing, Revised and Expanded. Marcel Dekker Inc., 1-5, New York, USA.
  • Buckley, D. H. (1981). Chapter 7: Wear, Surface effects in adhesion, friction, wear, and lubrication. Elsevier Scientific Publishing Company, 429-509, Amsterdam, Netherlands.
  • Çetinel, H., Özaydın, D. (2022). Wear Behavior of Boronized Fe-Based Mmc Produced by Powder Metallurgy. SSRN Electronic Journal.
  • Dipova, N. (2017). Design of low cost and innovative data acqusition in soil mechanics Testing using open source hardware. The Eurasia Proceedings of Science Technology Engineering and Mathematics, (1), 104-110.
  • Dular, M., Požar, T., Zevnik, J., Petkovšek, R. (2019). High speed observation of damage created by a collapse of a single cavitation bubble. Wear, 418–419(July 2018), 13–23.
  • Famularo, N., Kholod, Y., & Kosenkov, D. (2016). Integrating chemistry laboratory instrumentation into the industrial internet: building, programming, and experimenting with an automatic titrator. Journal of Chemical Education, 93(1), 175-181.
  • Fang, H., Xu, F., Zhang, G. (2020). Investigation of Dry Sliding Wear Behavior of Pack Boriding Fe-Based Powder Metallurgy. Integrated Ferroelectrics, 208(1), 67–82.
  • Günen, A., Keddam, M., Erdoğan, A., Karakaş, M. S. (2022). Pack-Boriding of Monel 400: Microstructural Characterization and Boriding Kinetics. Metals and Materials International, 28(8), 1851–1863.
  • Güngör, K. (2016). Sinterlenmiş bronz esaslı kaymalı yataklarda polimer kullanımının tribolojik özelliklere etkisi. Doktora Tezi, Sakarya Üniversitesi, Sakarya.
  • Güven, Y., Coşgun, E., Kocaoğlu, S., Gezici, H., & Yılmazlar, E. (2017). Understanding the concept of microcontroller based systems to choose the best hardware for applications, Res. Inventy Int. J. Eng. Sci. 7 (38).
  • Halling, J. (1978). Principles of Tribology. The Macmillan Press Ltd, UK.
  • Hardell, J., Yousfi, A., Lund, M., Pelcastre, L., Prakash, B. (2014). Abrasive wear behaviour of hardened high strength boron steel. Tribology-Materials, Surfaces & Interfaces, 8(2), 90-97.
  • Hemeda, S. G., Aboukarima, A. M., & Minyawi, M. (2017). Developing a logging unit for measuring and recording power data using Arduino board. Misr Journal of Agricultural Engineering, 34(4), 2053-2072.
  • Hernández-Rodríguez, E., González-Rivero, R. A., Schalm, O., Martínez, A., Hernández, L., Alejo-Sánchez, D., ... & Jacobs, W. (2023). Reliability Testing of a Low-Cost, Multi-Purpose Arduino-Based Data Logger Deployed in Several Applications Such as Outdoor Air Quality, Human Activity, Motion, and Exhaust Gas Monitoring. Sensors, 23(17), 7412.
  • Hutchings, I., Shipway, P. (2016). Chapter 5: Sliding Wear, Friction and Wear of Engineering Materials Second Edition, Elsevier Ltd, 107-164, Butterworth-Heinemann.
  • Jarkovsky, R., & Rokitanského, C. (2018). Testing device for tensile test based on Arduino. WSEAS Transactions on Systems and Control Archive, 13, 568-572.
  • Kondaveeti, H. K., Kumaravelu, N. K., Vanambathina, S. D., Mathe, S. E., & Vappangi, S. (2021). A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations. Computer Science Review, 40, 100364.
  • Kubínová, S., & Šlégr, J. (2015). ChemDuino: Adapting Arduino for low-cost chemical measurements in lecture and laboratory. López-Vargas, A., Fuentes, M., García, M. V., & Muñoz-Rodríguez, F. J. (2019). Low-Cost datalogger intended for remote monitoring of solar photovoltaic standalone systems based on Arduino™. IEEE Sensors Journal, 19(11), 4308-4320.
  • Kurgan, N. (2020). MAK453 - Triboloji Ders Notları. Ondokuzmayıs Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü.
  • McClain, R. L. (2014). Construction of a Photometer as an Instructional Tool for Electronics and Instrumentation. Journal of Chemical Education, 91(5), 747-750.
  • Neale, M. J., Gee, M. (2001). Chapter 2: Industrial Wear Problems, Guide to Wear Problems and Testing for Industry, William Andrew Incorporated, 3-31, New York, USA.
  • Rafiquzzaman, M. (2011). Microcontroller Theory and Applications with the PIC18F, 1st. ed., Wiley Publishing, 2011. Schultz, B.G., & van Vugt, F.T. (2016). Tap Arduino: An Arduino microcontroller for low-latency auditory feedback in sensorimotor synchronization experiments. Behav. Res. 48:1591–1607. doi: 10.3758/s13428-015-0671-3
  • Selçuk, B. (1994). Borlanmış AISI 1020 ve 5115 çeliklerinin sürtünme ve aşınma davranışlarının incelenmesi. Doktora Tezi. Erciyes Üniversitesi, Kayseri.
  • Shibe, V., Chawla, V. (2014). A Review of Surface Modification Techniques in Enhancing the Erosion Resistance of Engineering Components. International Journal of Research in Mechanical Engineering & Technology, 4, 2249-5762.
  • Stefanov, B. I., Lebrun, D., Mattsson, A., Granqvist, C. G., & Österlund, L. (2015). Demonstrating online monitoring of air pollutant photodegradation in a 3D printed gas-phase photocatalysis reactor. Journal of Chemical Education, 92(4), 678-682.
  • Swain, B., Bhuyan, S., Behera, R., Mohapatra, S. S., Behera, A. (2020). Wear: A Serious Problem in Industry. Patnaik, A., Singh, T., Kukshal, V. (Ed.), Tribology in Materials and Manufacturing. IntechOpen.
  • Upadhyay, R. K., Kumaraswamidhas, L. A. (2018). Chapter 11: Bearing failure issues and corrective measures through surface engineering, Makhlouf, A. S. H., Aliofkhazraei M. (Ed.), Handbook of Materials Failure Analysis. Elsevier Ltd, 209–233, Butterworth-Heinemann.
  • Url-1 http://www.lazarus-ide.org/index.php?page=features Erişim: 15 Ekim 2023
  • Varacha, P., Mastorakis, N., Jasek, R., Pospisilik, M., Chramcov, B., & Samek, D. (2012). Technical devices for supervising of a household via interned based on Arduino microcontroller. Advances in Applied Information Science, WSEAS Press, ss 252–257.
  • Wen, S., & Huang, P. (2012). Part II Friction And Wear, Principles of tribology. John Wiley & Sons (Asia) Pte Ltd, Tsingua University Press, China.
  • Yücel, A. (2015). Bor karbür takviyeli metal matrisli kompozitlerden kam üretiminin araştırılması. Doktora Tezi. Sivas Cumhuriyet Üniversitesi, Sivas.
  • Zariatin, D. L., Kurniawan, Y., & Afika, N. R. (2023). Development of Data Acquisition System on an Arduino-Based Tensile Test Machine for Composite Materials. Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa dan Inovasi, 331-340.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Machine Design and Machine Equipment, Tribology
Journal Section Articles
Authors

Lutuf Ertürk 0000-0002-2591-9094

Burhan Selçuk 0000-0001-5617-8674

Publication Date January 31, 2024
Submission Date December 11, 2023
Acceptance Date December 27, 2023
Published in Issue Year 2024 Volume: 16 Issue: 1

Cite

APA Ertürk, L., & Selçuk, B. (2024). Aşınma Test Cihazından Alınan Veriyi İşleyen Bir Program Geliştirilmesi. International Journal of Engineering Research and Development, 16(1), 267-278. https://doi.org/10.29137/umagd.1402219

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.