Research Article
BibTex RIS Cite

AISI 4340 Çeliğinin Farklı Gerinme Hızlarında ve Sıcaklıklarda Dinamik Basma Davranışı

Year 2024, Volume: 16 Issue: 2, 708 - 721, 30.06.2024
https://doi.org/10.29137/umagd.1385551

Abstract

Bu çalışmada, AISI 4340 çelik alaşımının dinamik basma davranışı ayrık-Hopkinson ve Taylor çarpma testleri ve nümerik çalışmalarla incelenmiştir. Ayrık-Hopkinson basınç barı kullanılarak oda sıcaklığında 725, 1500, 2000 s-1 gerinme hızlarında ve 150 ve 250 °C yüksek sıcaklıklarında dinamik basma testleri yapılmıştır. Çarpma koşullarında dinamik deformasyon davranışını gözlemlemek için 245, 324 ve 336 ms-1 çarpma hızlarında Taylor çarpma testleri icra edilmiştir. Taylor çarpma testlerinde numunelerdeki gerilme ve sıcaklık dağılımının incelenmesi için Ls-Dyna 3D sonlu elemanlar yöntemi kullanılarak numerik çalışmalar yapılmıştır. Deneysel sonuçlar oda sıcaklığında yapılan dinamik basma testlerinde gerinme hızının artışı ile akma ve en fazla basma dayanımının ve toplam gerinmenin arttığını göstermiştir. Yüksek sıcaklık koşullarında yumuşama etkisi dolayısıyla her iki dayanım da düşmüş ve toplam gerinmeler artmıştır. Taylor çarpma test sonuçları tüm numunelerin mantarlanma deformasyonuna uğradığını ve çarpma hızı artışının kesme çatlakları ve deformasyon sürecinin sonunda kırılmaya neden olduğunu göstermiştir. Nümerik sonuçlar en yüksek sıcaklıkların üç çarpma hızı için de çarpma yüzeylerinde bulunduğunu göstermiştir. Ek olarak, çarpma hızının artışı çarpma yüzeylerine yakın deforme olmuş bölgelerde gerilme dağılımını artırmıştır.

References

  • Acosta C.A., Hernandez C., Maranon A., Casas-Rodriguez J.P. (2016). Validation of material constitutive parameters for the AISI 1010 steel from Taylor impact tests, Materials and Design, 2016, 110, 324-331.
  • ASTM E8, Standard test methods for tension testing of metallic materials, ASTM International.
  • Campagne L., Daridon L., Oussouaddi O., Ahzi S., Sun X. (2008). Simulation of the Taylor impact test and analysis of damage evolution using a nucleation and growth based approach, Modeling, Measurement and Control, 77 (3-4), 19-35.
  • Chakraborty S., Shaw A., Banerjee B. (2015). An axisymmetric model for Taylor impact test and estimation of metal plasticity, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2174), 20140556.
  • Chen W., Song B. (2010). Split Hopkinson (Kolsky) Bar Design, Testing and Applications, Springer Science and Business Media.
  • Chen G., Huang X. (2016). Simulation of deformation and fracture characteristics of a 45 steel Taylor impact specimen, Engineering Transactions, 64(2), 225-240.
  • Johnson G.R., Cook W.H. (1983). A constitutive model and data for metalssubjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics, 21, 541-7.
  • Johnson G.R., Cook W.H. (1985). Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engineering Fracture Mechanics, 21(1), 31-48.
  • Kar G., Roy Chowdhury S., Roy D. (2020). A nonequilibrium thermodynamic model for viscoplacticity coupled with damage for BCC metals, Mechanics of Advanced Materials and Structures, 27(13), 1110-1119.
  • Kumar M., Dixt P.M. (2017). Simulation of Fracture in the Taylor Test Using Continuum Damage Mechanics Model. Procedia Engineering, 173, 1215-1222.
  • Martin M., Shen T., Thadhani N.N. (2008). Instrumented anvil-on-rod impact experiments for validating constitutive strength model for simulating transient dynamic deformation response of metals, Materials Science and Engineering: A, 494(1-2), 416-424.
  • Mehrabi A., Sharifi H., Asadabad M.A., Najafabadi R.A., Rajaee A. (2020). Improvement of AISI 4340 steel properties by intermediate quenching – microstructure, mechanical properties, and fractography, International Journal of Materials Research, 111(9), 711-779.
  • Odeshi A.G., Al-ameeri S., Mirfakhraei S., Yazdani F., Bassim M.N. (2006). Deformation and failure mechanism in AISI 4340 steel under ballistic impact, Theoretical and Applied Fracture Mechanics, 45, 18-24.
  • Odeshi A.G., Bassim M.N. (2009). High strain-ratefracture and failure of a high strength low alloy steel in compression, Materials Science and Engineering: A, 525(1-2), 96-101.
  • Odoh D., Owolabi G., Odshi A. (2013). Whitworth H, Shear Band Formation in AISI 4340 Steel Under Dynamic Impact Loads: Modeling and Experiment, Acta Metallurgica Sinica (English Letters), Vol:26, No:4, 378-384.
  • Owolabi G., Odoh D., Odeshi A., Whitworth H. (2013). Occurrence of Dynamic Shear Bands in AISI 4340 Steel under Impact Loads, World Journal of Mechanics, 3, 139-145.
  • Piao M., Huh H., Lee I., Ahn K., Kim H., Park L. (2016). Characterization of flow stress at ultra-high strain rates by proper extrapolation with Taylor impact tests, International Journal of Impact Engineering, 91, 142-157.
  • Rakvag K.G., Borvik T., Hopperstad O.S. (2014). A numerical study on the deformation and fracture modes of steel projectiles during Taylor bar impact tests. International Journal of Solids and Structures, 51(3-4), 808-821.
  • Ramesh K.T. (2008). High Strain Rate and Impact Experiments, Springer Handbook of Experimental Solid Mechanics, J. Sharpe, W. N., Editor. Springer.
  • Sajadifar S.V., Yapici G.G., Ketabchi M., Bemanizadeh B. (2013). High temperature deformation Behavior of 4340 steel:activation energy calculation and modeling of flow response, Journal of Iron and Steel Research International, 20(12), 133-139.
  • Sen S., Banerjee B., Shaw A. (2020). Taylor impact test revisited: Determination of plasticity parameters for metals at high strain rate, International Journal of Solids and Structures, 193-194, 357-374.
  • Souza M.F., Serrao L.F., Pardal J.M., Tavares S.S.M., Fonseca M.C. (2022). Tempering influence on residual stresses and mechanical properties of AISI 4340 steel, The International Journal of Advanced Manufacturing Technology, 120:1123-1134.
  • Teng X., Wierzbicki T., Hiermaier S., Rohr I. (2005). Numerical prediction of fracture in the Taylor test. International Journal of Solids and Structures, 42(9-10), 2929-2948.
  • Xiao X.K., Zhang W., Wei G., Mu Z.C. (2010). Effect of projectile hardness on deformation and fracture behavior in the Taylor impact test, Materials & Design, 31(10), 4913-4920.

Dynamic Compression Behavior Of AISI 4340 Steel Under Various Strain Rates And Temperatures

Year 2024, Volume: 16 Issue: 2, 708 - 721, 30.06.2024
https://doi.org/10.29137/umagd.1385551

Abstract

In this study, dynamic compression behavior of AISI 4340 steel alloy was investigated with split-Hopkinson and Taylor impact tests and numerical studies. Dynamic compression tests at strain rates of 725, 1500, 2000 s-1 at room temperature and at high temperatures of 150 and 250 °C were done using split-Hopkinson pressure bar. Taylor impact tests with the impact velocities of 245, 324 and 336 ms-1 were performed with cylindirical specimens to observe dynamic deformation behavior at impact conditions. Numerical studies using Ls-Dyna 3D finite element method were conducted to investigate temperature and stress distribution of specimens during Taylor impact tests. Experimental results revealed that as strain rate increased, yield and ultimate compressive strengths and total strains increased at room temperature at dynamic compression tests. At elevated test conditions, both strengths decreased and total strains increased due to softening effect. Taylor impact test results showed that all the specimens exhibited mushroomed deformation and increase of impact velocity led to shear crack and fracture at the end of deformation process. Numerical results indicates that highest temperatures were obtained at the impact surfaces for three impact velocities. In addition, the increase of impact velocity enhanced the stress distribution at deformed regions near impact surfaces.

References

  • Acosta C.A., Hernandez C., Maranon A., Casas-Rodriguez J.P. (2016). Validation of material constitutive parameters for the AISI 1010 steel from Taylor impact tests, Materials and Design, 2016, 110, 324-331.
  • ASTM E8, Standard test methods for tension testing of metallic materials, ASTM International.
  • Campagne L., Daridon L., Oussouaddi O., Ahzi S., Sun X. (2008). Simulation of the Taylor impact test and analysis of damage evolution using a nucleation and growth based approach, Modeling, Measurement and Control, 77 (3-4), 19-35.
  • Chakraborty S., Shaw A., Banerjee B. (2015). An axisymmetric model for Taylor impact test and estimation of metal plasticity, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2174), 20140556.
  • Chen W., Song B. (2010). Split Hopkinson (Kolsky) Bar Design, Testing and Applications, Springer Science and Business Media.
  • Chen G., Huang X. (2016). Simulation of deformation and fracture characteristics of a 45 steel Taylor impact specimen, Engineering Transactions, 64(2), 225-240.
  • Johnson G.R., Cook W.H. (1983). A constitutive model and data for metalssubjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics, 21, 541-7.
  • Johnson G.R., Cook W.H. (1985). Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engineering Fracture Mechanics, 21(1), 31-48.
  • Kar G., Roy Chowdhury S., Roy D. (2020). A nonequilibrium thermodynamic model for viscoplacticity coupled with damage for BCC metals, Mechanics of Advanced Materials and Structures, 27(13), 1110-1119.
  • Kumar M., Dixt P.M. (2017). Simulation of Fracture in the Taylor Test Using Continuum Damage Mechanics Model. Procedia Engineering, 173, 1215-1222.
  • Martin M., Shen T., Thadhani N.N. (2008). Instrumented anvil-on-rod impact experiments for validating constitutive strength model for simulating transient dynamic deformation response of metals, Materials Science and Engineering: A, 494(1-2), 416-424.
  • Mehrabi A., Sharifi H., Asadabad M.A., Najafabadi R.A., Rajaee A. (2020). Improvement of AISI 4340 steel properties by intermediate quenching – microstructure, mechanical properties, and fractography, International Journal of Materials Research, 111(9), 711-779.
  • Odeshi A.G., Al-ameeri S., Mirfakhraei S., Yazdani F., Bassim M.N. (2006). Deformation and failure mechanism in AISI 4340 steel under ballistic impact, Theoretical and Applied Fracture Mechanics, 45, 18-24.
  • Odeshi A.G., Bassim M.N. (2009). High strain-ratefracture and failure of a high strength low alloy steel in compression, Materials Science and Engineering: A, 525(1-2), 96-101.
  • Odoh D., Owolabi G., Odshi A. (2013). Whitworth H, Shear Band Formation in AISI 4340 Steel Under Dynamic Impact Loads: Modeling and Experiment, Acta Metallurgica Sinica (English Letters), Vol:26, No:4, 378-384.
  • Owolabi G., Odoh D., Odeshi A., Whitworth H. (2013). Occurrence of Dynamic Shear Bands in AISI 4340 Steel under Impact Loads, World Journal of Mechanics, 3, 139-145.
  • Piao M., Huh H., Lee I., Ahn K., Kim H., Park L. (2016). Characterization of flow stress at ultra-high strain rates by proper extrapolation with Taylor impact tests, International Journal of Impact Engineering, 91, 142-157.
  • Rakvag K.G., Borvik T., Hopperstad O.S. (2014). A numerical study on the deformation and fracture modes of steel projectiles during Taylor bar impact tests. International Journal of Solids and Structures, 51(3-4), 808-821.
  • Ramesh K.T. (2008). High Strain Rate and Impact Experiments, Springer Handbook of Experimental Solid Mechanics, J. Sharpe, W. N., Editor. Springer.
  • Sajadifar S.V., Yapici G.G., Ketabchi M., Bemanizadeh B. (2013). High temperature deformation Behavior of 4340 steel:activation energy calculation and modeling of flow response, Journal of Iron and Steel Research International, 20(12), 133-139.
  • Sen S., Banerjee B., Shaw A. (2020). Taylor impact test revisited: Determination of plasticity parameters for metals at high strain rate, International Journal of Solids and Structures, 193-194, 357-374.
  • Souza M.F., Serrao L.F., Pardal J.M., Tavares S.S.M., Fonseca M.C. (2022). Tempering influence on residual stresses and mechanical properties of AISI 4340 steel, The International Journal of Advanced Manufacturing Technology, 120:1123-1134.
  • Teng X., Wierzbicki T., Hiermaier S., Rohr I. (2005). Numerical prediction of fracture in the Taylor test. International Journal of Solids and Structures, 42(9-10), 2929-2948.
  • Xiao X.K., Zhang W., Wei G., Mu Z.C. (2010). Effect of projectile hardness on deformation and fracture behavior in the Taylor impact test, Materials & Design, 31(10), 4913-4920.
There are 24 citations in total.

Details

Primary Language English
Subjects Numerical Methods in Mechanical Engineering, Material Design and Behaviors, Numerical Modelling and Mechanical Characterisation
Journal Section Articles
Authors

Hakan Hafızoğlu 0000-0002-7244-6429

Early Pub Date June 30, 2024
Publication Date June 30, 2024
Submission Date November 3, 2023
Acceptance Date May 4, 2024
Published in Issue Year 2024 Volume: 16 Issue: 2

Cite

APA Hafızoğlu, H. (2024). Dynamic Compression Behavior Of AISI 4340 Steel Under Various Strain Rates And Temperatures. International Journal of Engineering Research and Development, 16(2), 708-721. https://doi.org/10.29137/umagd.1385551

All Rights Reserved. Kırıkkale University, Faculty of Engineering.