Research Article
BibTex RIS Cite

A Comparative Analysis of Deep Learning Parameters for Enhanced Detection of Yellow Rust in Wheat

Year 2024, Volume: 16 Issue: 2, 659 - 667, 30.06.2024
https://doi.org/10.29137/umagd.1390763

Abstract

Wheat, one of the most important food sources in human history, is one of the most important cereal crops produced and consumed in our country. However, if diseases such as yellowpas, which is one of the risk factors in wheat production, cannot be detected in a timely and accurate manner, situations such as decreased production may be encountered. For this reason, it is more advantageous to use decision support systems based on deep learning in the detection and classification of diseases in agricultural products instead of experts who perform the processes in a longer time and have a higher error rate. In this study, the effects of the number of layers, activation function and optimization algorithm variables on the classification of deep learning models used for the classification of yellow rust disease in wheat were examined. As a result of the study, the highest success value was obtained with 97.36% accuracy when using a 5-layer CNN model using Leaky ReLU activation function and Nadam optimization algorithm.

Supporting Institution

Sivas University of Science and Technology

Project Number

2023-GENL-Müh-0003

Thanks

“This work has been supported by the Scientifıc Research Projects Coordination Unit of the Sivas University of Science and Technology. Project Number: 2023-GENL-Müh-0003”

References

  • Adem, K. (2022). P + FELU: Flexible and trainable fast exponential linear unit for deep learning architectures. Neural Computing and Applications, 34(24), 21729-21740. https://doi.org/10.1007/s00521-022-07625-3
  • Ahad, M. T., Li, Y., Song, B., & Bhuiyan, T. (2023). Comparison of CNN-based deep learning architectures for rice diseases classification. Artificial Intelligence in Agriculture, 9, 22-35. https://doi.org/10.1016/j.aiia.2023.07.001
  • AHDB. (2020). Encyclopaedia of cereal diseases | AHDB. https://ahdb.org.uk/knowledge-library/encyclopaedia-of-cereal-diseases
  • Beddow, J. M., Pardey, P. G., Chai, Y., Hurley, T. M., Kriticos, D. J., Braun, H.-J., Park, R. F., Cuddy, W. S., & Yonow, T. (2015). Research investment implications of shifts in the global geography of wheat stripe rust. Nature Plants, 1, 15132. https://doi.org/10.1038/nplants.2015.132
  • Bukhari, H. R., Mumtaz, R., Inayat, S., Shafi, U., Haq, I. U., Zaidi, S. M. H., & Hafeez, M. (2021). Assessing the Impact of Segmentation on Wheat Stripe Rust Disease Classification Using Computer Vision and Deep Learning. IEEE Access, 9, 164986-165004. https://doi.org/10.1109/ACCESS.2021.3134196
  • Chen, X. M. (2005). Epidemiology and control of stripe rust [Puccinia striiformis f. Sp. Tritici] on wheat: Canadian Journal of Plant Pathology: Vol 27, No 3. https://www.tandfonline.com/doi/abs/10.1080/07060660509507230
  • El Naqa, I., & Murphy, M. J. (2015). What Is Machine Learning? Içinde I. El Naqa, R. Li, & M. J. Murphy (Ed.), Machine Learning in Radiation Oncology (ss. 3-11). Springer International Publishing. https://doi.org/10.1007/978-3-319-18305-3_1
  • Feng, Z., Song, L., Duan, J., He, L., Zhang, Y., Wei, Y., & Feng, W. (2022). Monitoring Wheat Powdery Mildew Based on Hyperspectral, Thermal Infrared, and RGB Image Data Fusion. Sensors, 22(1), Article 1. https://doi.org/10.3390/s22010031
  • Genaev, M., Ekaterina, S., & Afonnikov, D. (2020). Application of neural networks to image recognition of wheat rust diseases. 2020 Cognitive Sciences, Genomics and Bioinformatics (CSGB), 40-42. https://doi.org/10.1109/CSGB51356.2020.9214703
  • Heo, J., Seo, S., & Kang, P. (2023). Exploring the differences in adversarial robustness between ViT- and CNN-based models using novel metrics. Computer Vision and Image Understanding, 235, 103800. https://doi.org/10.1016/j.cviu.2023.103800
  • Jentzen, A., & Welti, T. (2023). Overall error analysis for the training of deep neural networks via stochastic gradient descent with random initialisation. Applied Mathematics and Computation, 455, 127907. https://doi.org/10.1016/j.amc.2023.127907
  • Li, L., Xu, W., & Yu, H. (2020). Character-level neural network model based on Nadam optimization and its application in clinical concept extraction. Neurocomputing, 414, 182-190. https://doi.org/10.1016/j.neucom.2020.07.027
  • Liu, Y., Wang, X., Wang, L., & Liu, D. (2019). A modified leaky ReLU scheme (MLRS) for topology optimization with multiple materials. Applied Mathematics and Computation, 352, 188-204. https://doi.org/10.1016/j.amc.2019.01.038
  • Long, M., Hartley, M., Morris, R. J., & Brown, J. K. M. (2023). Classification of wheat diseases using deep learning networks with field and glasshouse images. Plant Pathology, 72(3), 536-547. https://doi.org/10.1111/ppa.13684
  • Mi, Z., Zhang, X., Su, J., Han, D., & Su, B. (2020). Wheat Stripe Rust Grading by Deep Learning With Attention Mechanism and Images From Mobile Devices. Frontiers in Plant Science, 11, 558126. https://doi.org/10.3389/fpls.2020.558126
  • Özbay, E., Özbay, F. A., & Gharehchopogh, F. S. (2023). Peripheral blood smear images classification for acute lymphoblastic leukemia diagnosis with an improved convolutional neural network. Journal of Bionic Engineering, 1-17
  • Ramadevi, B., Kasi, V. R., & Bingi, K. (2024). Fractional ordering of activation functions for neural networks: A case study on Texas wind turbine. Engineering Applications of Artificial Intelligence, 127, 107308. https://doi.org/10.1016/j.engappai.2023.107308
  • Schwessinger, B. (2017). Fundamental wheat stripe rust research in the 21st century—Schwessinger—2017—New Phytologist—Wiley Online Library. https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.14159
  • Seyyarer, E., Ayata, F., Uçkan, T., & Karci, A. (t.y.). Derin Öğrenmede Kullanilan Optimizasyon Algoritmalarinin Uygulanmasi Ve Kiyaslanmasi.
  • Statista. (t.y.). Production of wheat worldwide 2022/2023. Statista. Geliş tarihi 02 Kasım 2023, gönderen https://www.statista.com/statistics/267268/production-of-wheat-worldwide-since-1990/
  • Tadesse, W., Sanchez-Garcia, M., Gizaw Assefa, S., Amri, A., Bishaw, Z., Ogbonnaya, F. C., & Baum, M. (2019). Genetic Gains in Wheat Breeding and Its Role in Feeding the World. Crop Breeding Genetics and Genomics;1:E190005,(2019) Pagination 1-28. https://doi.org/10.20900/cbgg20190005
  • Tang, Z., Wang, M., Schirrmann, M., Dammer, K.-H., Li, X., Brueggeman, R., Sankaran, S., Carter, A. H., Pumphrey, M. O., Hu, Y., Chen, X., & Zhang, Z. (2023). Affordable High Throughput Field Detection of Wheat Stripe Rust Using Deep Learning with Semi-Automated Image Labeling. Computers and Electronics in Agriculture, 207, 107709. https://doi.org/10.1016/j.compag.2023.107709
  • Toda, Y., & Okura, F. (2019). How Convolutional Neural Networks Diagnose Plant Disease. Plant Phenomics (Washington, D.C.), 2019, 9237136. https://doi.org/10.34133/2019/9237136
  • TUIK. (t.y.). TÜİK Kurumsal. Geliş tarihi 02 Kasım 2023, gönderen https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2022
  • Yildirim, M., & Çinar, A. (2021). A new model for classification of human movements on videos using convolutional neural networks: MA-Net. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 9(6), 651-659
  • Yue, J., Yang, H., Feng, H., Han, S., Zhou, C., Fu, Y., Guo, W., Ma, X., Qiao, H., & Yang, G. (2023). Hyperspectral-to-image transform and CNN transfer learning enhancing soybean LCC estimation. Computers and Electronics in Agriculture, 211, 108011. https://doi.org/10.1016/j.compag.2023.108011

Buğdayda Sarı Pasın Gelişmiş Tespiti için Derin Öğrenme Parametrelerinin Karşılaştırmalı Analizi

Year 2024, Volume: 16 Issue: 2, 659 - 667, 30.06.2024
https://doi.org/10.29137/umagd.1390763

Abstract

İnsanlık tarihinin en önemli besin kaynaklarından biri olan buğday ülkemizde de üretimi ve tüketimi yapılmakta olan en önemi tahıl ürünlerinden biridir. Fakat buğday üretimindeki risk faktörlerinden biri olan sarıpas gibi hastalıkların zamanında ve doğru bir şekilde tespit edilememesi durumunda üretimin azalması gibi durumlarla karşı karşıya kalınabilmektedir. Bu nedenle zirai ürünlerdeki hastalıkların tespit ve sınıflandırılması işlemlerinde daha uzun sürede işlemleri gerçekleştiren ve hata yapma oranı daha yüksek olan uzmanlar yerine derin öğrenmeye dayalı karar destek sistemlerinin kullanılması daha avantajlıdır. Bu çalışmada da buğdaydaki sarı pas hastalığının sınıflandırılması işlemleri için kullanılan derin öğrenme modellerinde katman sayısı, aktivasyon fonksiyonu ve optimizasyon algoritması değişkenlerinin sınıflandırmaya etkisi incelenmiştir. Çalışma sonucunda en yüksek başarı değeri %97,36 doğruluk ile Leaky ReLU aktivasyon fonksiyonu ve Nadam optimizasyon algoritması kullanan 5 katmanlı CNN modeli kullanıldığında elde edilmiştir.

Project Number

2023-GENL-Müh-0003

References

  • Adem, K. (2022). P + FELU: Flexible and trainable fast exponential linear unit for deep learning architectures. Neural Computing and Applications, 34(24), 21729-21740. https://doi.org/10.1007/s00521-022-07625-3
  • Ahad, M. T., Li, Y., Song, B., & Bhuiyan, T. (2023). Comparison of CNN-based deep learning architectures for rice diseases classification. Artificial Intelligence in Agriculture, 9, 22-35. https://doi.org/10.1016/j.aiia.2023.07.001
  • AHDB. (2020). Encyclopaedia of cereal diseases | AHDB. https://ahdb.org.uk/knowledge-library/encyclopaedia-of-cereal-diseases
  • Beddow, J. M., Pardey, P. G., Chai, Y., Hurley, T. M., Kriticos, D. J., Braun, H.-J., Park, R. F., Cuddy, W. S., & Yonow, T. (2015). Research investment implications of shifts in the global geography of wheat stripe rust. Nature Plants, 1, 15132. https://doi.org/10.1038/nplants.2015.132
  • Bukhari, H. R., Mumtaz, R., Inayat, S., Shafi, U., Haq, I. U., Zaidi, S. M. H., & Hafeez, M. (2021). Assessing the Impact of Segmentation on Wheat Stripe Rust Disease Classification Using Computer Vision and Deep Learning. IEEE Access, 9, 164986-165004. https://doi.org/10.1109/ACCESS.2021.3134196
  • Chen, X. M. (2005). Epidemiology and control of stripe rust [Puccinia striiformis f. Sp. Tritici] on wheat: Canadian Journal of Plant Pathology: Vol 27, No 3. https://www.tandfonline.com/doi/abs/10.1080/07060660509507230
  • El Naqa, I., & Murphy, M. J. (2015). What Is Machine Learning? Içinde I. El Naqa, R. Li, & M. J. Murphy (Ed.), Machine Learning in Radiation Oncology (ss. 3-11). Springer International Publishing. https://doi.org/10.1007/978-3-319-18305-3_1
  • Feng, Z., Song, L., Duan, J., He, L., Zhang, Y., Wei, Y., & Feng, W. (2022). Monitoring Wheat Powdery Mildew Based on Hyperspectral, Thermal Infrared, and RGB Image Data Fusion. Sensors, 22(1), Article 1. https://doi.org/10.3390/s22010031
  • Genaev, M., Ekaterina, S., & Afonnikov, D. (2020). Application of neural networks to image recognition of wheat rust diseases. 2020 Cognitive Sciences, Genomics and Bioinformatics (CSGB), 40-42. https://doi.org/10.1109/CSGB51356.2020.9214703
  • Heo, J., Seo, S., & Kang, P. (2023). Exploring the differences in adversarial robustness between ViT- and CNN-based models using novel metrics. Computer Vision and Image Understanding, 235, 103800. https://doi.org/10.1016/j.cviu.2023.103800
  • Jentzen, A., & Welti, T. (2023). Overall error analysis for the training of deep neural networks via stochastic gradient descent with random initialisation. Applied Mathematics and Computation, 455, 127907. https://doi.org/10.1016/j.amc.2023.127907
  • Li, L., Xu, W., & Yu, H. (2020). Character-level neural network model based on Nadam optimization and its application in clinical concept extraction. Neurocomputing, 414, 182-190. https://doi.org/10.1016/j.neucom.2020.07.027
  • Liu, Y., Wang, X., Wang, L., & Liu, D. (2019). A modified leaky ReLU scheme (MLRS) for topology optimization with multiple materials. Applied Mathematics and Computation, 352, 188-204. https://doi.org/10.1016/j.amc.2019.01.038
  • Long, M., Hartley, M., Morris, R. J., & Brown, J. K. M. (2023). Classification of wheat diseases using deep learning networks with field and glasshouse images. Plant Pathology, 72(3), 536-547. https://doi.org/10.1111/ppa.13684
  • Mi, Z., Zhang, X., Su, J., Han, D., & Su, B. (2020). Wheat Stripe Rust Grading by Deep Learning With Attention Mechanism and Images From Mobile Devices. Frontiers in Plant Science, 11, 558126. https://doi.org/10.3389/fpls.2020.558126
  • Özbay, E., Özbay, F. A., & Gharehchopogh, F. S. (2023). Peripheral blood smear images classification for acute lymphoblastic leukemia diagnosis with an improved convolutional neural network. Journal of Bionic Engineering, 1-17
  • Ramadevi, B., Kasi, V. R., & Bingi, K. (2024). Fractional ordering of activation functions for neural networks: A case study on Texas wind turbine. Engineering Applications of Artificial Intelligence, 127, 107308. https://doi.org/10.1016/j.engappai.2023.107308
  • Schwessinger, B. (2017). Fundamental wheat stripe rust research in the 21st century—Schwessinger—2017—New Phytologist—Wiley Online Library. https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.14159
  • Seyyarer, E., Ayata, F., Uçkan, T., & Karci, A. (t.y.). Derin Öğrenmede Kullanilan Optimizasyon Algoritmalarinin Uygulanmasi Ve Kiyaslanmasi.
  • Statista. (t.y.). Production of wheat worldwide 2022/2023. Statista. Geliş tarihi 02 Kasım 2023, gönderen https://www.statista.com/statistics/267268/production-of-wheat-worldwide-since-1990/
  • Tadesse, W., Sanchez-Garcia, M., Gizaw Assefa, S., Amri, A., Bishaw, Z., Ogbonnaya, F. C., & Baum, M. (2019). Genetic Gains in Wheat Breeding and Its Role in Feeding the World. Crop Breeding Genetics and Genomics;1:E190005,(2019) Pagination 1-28. https://doi.org/10.20900/cbgg20190005
  • Tang, Z., Wang, M., Schirrmann, M., Dammer, K.-H., Li, X., Brueggeman, R., Sankaran, S., Carter, A. H., Pumphrey, M. O., Hu, Y., Chen, X., & Zhang, Z. (2023). Affordable High Throughput Field Detection of Wheat Stripe Rust Using Deep Learning with Semi-Automated Image Labeling. Computers and Electronics in Agriculture, 207, 107709. https://doi.org/10.1016/j.compag.2023.107709
  • Toda, Y., & Okura, F. (2019). How Convolutional Neural Networks Diagnose Plant Disease. Plant Phenomics (Washington, D.C.), 2019, 9237136. https://doi.org/10.34133/2019/9237136
  • TUIK. (t.y.). TÜİK Kurumsal. Geliş tarihi 02 Kasım 2023, gönderen https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2022
  • Yildirim, M., & Çinar, A. (2021). A new model for classification of human movements on videos using convolutional neural networks: MA-Net. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 9(6), 651-659
  • Yue, J., Yang, H., Feng, H., Han, S., Zhou, C., Fu, Y., Guo, W., Ma, X., Qiao, H., & Yang, G. (2023). Hyperspectral-to-image transform and CNN transfer learning enhancing soybean LCC estimation. Computers and Electronics in Agriculture, 211, 108011. https://doi.org/10.1016/j.compag.2023.108011
There are 26 citations in total.

Details

Primary Language English
Subjects Decision Support and Group Support Systems
Journal Section Articles
Authors

Kemal Adem 0000-0002-3752-7354

Esra Kavalcı Yılmaz 0000-0003-1314-4495

Fatih Ölmez 0000-0001-7016-2708

Kübra Çelik 0000-0001-5728-1411

Halit Bakır 0000-0003-3327-2822

Project Number 2023-GENL-Müh-0003
Early Pub Date June 30, 2024
Publication Date June 30, 2024
Submission Date November 14, 2023
Acceptance Date March 4, 2024
Published in Issue Year 2024 Volume: 16 Issue: 2

Cite

APA Adem, K., Kavalcı Yılmaz, E., Ölmez, F., Çelik, K., et al. (2024). A Comparative Analysis of Deep Learning Parameters for Enhanced Detection of Yellow Rust in Wheat. International Journal of Engineering Research and Development, 16(2), 659-667. https://doi.org/10.29137/umagd.1390763

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.