Research Article
BibTex RIS Cite

Gevrek İnce Metal Sacların Çeşitli Uyarma Akımı Frekanslarıyla Isıtmak için İndüksiyonla Isıtma Sisteminin Simülasyonu ve Gerçekleştirilmesi

Year 2024, Volume: 16 Issue: 2, 896 - 909, 30.06.2024
https://doi.org/10.29137/umagd.1439051

Abstract

İndüksiyonla ısıtma işlemi birçok farklı değişkenle ilişkili olduğundan dolayı doğrusal olmayan bir problemdir. Bu problemin matematiksel analizi oldukça zordur ve basitleştirilmesi gerekmektedir. Çoğu durumda, parametrelerin mekansal geometriye dayalı olarak hesaplanması da önem taşımaktadır. Bu çalışma indüksiyonla ısıtma probleminin bir simülasyon modelini ele almaktadır. Arşimet spiral bobininin çeşitli akımları ve frekansları altında kırılgan metal levhaların indüksiyonla ısıtma özellikleri, karmaşık yapılara bir çözüm olan COMSOL Multiphysics'in sonlu elemanlar yöntemi kullanılarak simüle edilmiştir. Kısmi etkileri ayırt etmek için bobin modeli, gerçek bobinin geometrisine çok yakın olacak şekilde ayarlanmıştır. Simülasyon süreci iki aşamadan oluşmaktadır. İlk durum, frekans alanı analizinde uyarma akımı frekansının kademeli olarak arttırılmasıyla ısıtma işleminin değerlendirilmesi ile elde edilirken, ikinci durum, frekans geçici durumunda sabit frekanslı bir akımın uygulanması ve ısıtma işleminin modelde değerlendirilmesi ile elde edilir. Dolayısıyla simülasyon modeli her iki durumda da iş parçası malzemesinin doğrusal olmayan elektromanyetik ve termal özellikleri hakkında temel bilgileri sağlar. Simülasyon modeli sonuçlarını doğrulamak için bir laboratuvar modeli geliştirilip ve deneysel sıcaklık ölçümleri simülasyon sonuçlarıyla karşılaştırılmıştır.

References

  • Aflyatunov, R. R., Khazieva, R. T., & Vasilyev, P.I. (2022). Development and research of an induction heating system for a long pipeline. Journal of Physics: Conference Series, 2182(1). IOP Publishing. Doi: 10.1088/1742-6596/2182/1/012039
  • Aydemir, M. T., Zafarmand, F., Uslu, A., Ünver, H. M., Baranoğlu, B., & Aydın, E. (2019). Design and Implementation of an Induction Heating System for Brittle Sheet Metals. International Journal of Natural and Engineering Sciences, 11(3), 29–33. Retrieved from https://ijnes.org/index.php/ijnes/article/view/300
  • Baranoğlu, B., Özbek, M. E., & Aydın, E. (2020). İndüksiyon ön ısıtmalı bir elektromanyetik darbe şekillendirme sisteminin deneysel analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi C, 35(4), 2101-2112, Doi:10.17341/gazimmfd.605773
  • Bermúdez, A., Gómez, D., Muñiz, M.C., & Salgado, P. (2007). Transient numerical simulation of a thermo electrical problem in cylindrical induction heating furnaces. Advances in Computational Mathematics 26: 39–62. Doi: 10.1007/s10444-005-7470-9
  • Bocharova, O., Tynchenko, Vadim., Bocharov, A., Oreshenko, T., Murygin, A., & Panfilov, I. (2019). Induction heating simulation of the waveguide assembly elements. Journal of Physics: Conference Series. 1353. 012040. Doi 10.1088/1742-6596/1353/1/012040
  • Dalaee, M., Gloor, L., Leinenbach, Ch., & Wegener, K. (2019) Experimental and numerical study of the influence of induction heating process on build rates Induction Heating-assisted laser Direct Metal Deposition (IH-DMD). Surface and Coatings Technology 384: 125275. Doi: 10.1016/j.surfcoat.2019.125275
  • De Sousa, W.T.B., Polasek, A., Dias, R., C.F.T, M., & De Andrade, R. (2014). Thermal–electrical analogy for simulations of superconducting fault current limiters. Cryogenics 62: 97-109. Doi: 10.1016/j.cryogenics.2014.04.015
  • Dou, Q. (2022). Summary of Research on Electromagnetic Induction Heating Temperature Control Method under the Background of Internet Convergence. 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, pp. 38-41, Doi: 10.1109/ICIRCA54612.2022.9985648
  • Esteve, V., Jordan, J., Sanchis, E., Dede, E.J., Maset, E., Ejea, J.B., & Ferreres, A. (2015). Enhanced Pulse-Density-Modulated Power Control for High Frequency Induction Heating Inverters. IEEE Transactions on Industrial Electronics. 62. 1-1. Doi: 10.1109/TIE.2015.2436352
  • Gholami, M., Verougstraete, B., Vanoudenhoven, R., Baron, G.V., Van Assche, T., & Denayer, J. F.M. (2022). Induction heating as an alternative electrified heating method for carbon capture process. Chemical Engineering Journal 431(4), 1385-8947. Doi: 10.1016/j.cej.2021.133380
  • Istardi, D., & Triwinarko, A. (2011). Induction Heating Process Design Using COMSOL® Multiphysics Software, ISSN: 1693-6930, Telkomnika, 9(2), August, pp. 327-334. Doi:10.12928/telkomnika.v9i2.704
  • Jinkun, M., Guangyu, Zh., Yidan, Y., & Jingquan, L. (2021). COMSOL Simulation for Design of Induction Heating System in VULCAN Facility. Science and Technology of Nuclear Installations, Article ID 9922503, 12 pages, Doi: 10.1155/2021/9922503
  • Kennedy M. W., Akhtar, S., Bakken, J. A., & Aune R. E. (2011). Analytical and Experimental validation of electromagnetic simulations using COMSOL re Inductance induction heating and magnetic field, Comsol Conference, Stuttgart, Germany
  • Kennedy, M., Akhtar, S., & Bakken, J., & Aune, R. (2011). Analytical and Experimental Validation of Electromagnetic Simulations Using COMSOL®, re Inductance, Induction Heating and Magnetic Fields. COMSOL users’ conference, Stuttgart, Germany
  • Liu H, Rao J (2009). Coupled modeling of electromagnetic-thermal problem in induction heating process considering material operties. In 2009 International Conference on Information Engineering and Computer Science (pp. 1-4). IEEE
  • Ludtke, U., & Schulze, D. (2001). FEM software for simulation of heating by internal sources, Proc. of HIS-01 Int. Seminar, Padua, Italy, Sept. 12-14.
  • Miyake, D., Umetani, K., Kawahara, S., Ishihara, M., & Hiraki, E. (2022) High-Efficiency Solenoid Coil Structure for Induction Heating of Cylindrical Heating Object. 2022 IEEE 31st International Symposium on Industrial Electronics (ISIE), Anchorage, AK, USA, 307-313, Doi: 10.1109/ISIE51582.2022.9831459
  • Najafi, E., & Yatim, A. H. (2011). Design and implementation of a new multilevel inverter topology. IEEE transactions on industrial electronics 59(11): 4148-4154. Doi:10.1109/TIE.2011.2176691
  • Qu, H.P., Lang, Y.P., Yao, C.F., Chen, H.T., & Yang, C.Q. (2013). The effect of heat treatment on recrystallized microstructure, precipitation and ductility of hot rolled Fe-Cr-Al-REM ferritic stainless steel sheets, Materials Science and Engineering: A, 562, 9-16. Doi: 10.1016/j.msea.2012.11.008
  • Sankar, S., Ajith, G., & Ramesan, M. T. (2022). Copper alumina@ poly (aniline-co-indole) nanocomposites: synthesis, characterization, electrical properties and gas sensing applications. RSC advances 12(27): 17637-17644. Doi: 10.1039/D2RA02213C
  • Segura, G. M (2012). Induction Heating Converter’s Design, Control and Modelling Applied to Continuous Wire Heating, Doctoral Dissertation, Universitat Politecnica de Catalunya, Barcelona, Spain
  • Waluyo, Ratna, S., & Kurniadi, M. R. (2022). Induction Heating Stove Prototype of 130 kHz using Arduino Uno. In Electrotehnica, Electronica, Automatica (EEA) 70(1), 39-50, ISSN 1582-5175. Doi: 10.46904/eea.22.70.1.1108005
  • Xiaolong, W., Hui, Y., Guangliang, L., & Zhao, Z. (2011). The application of COMSOL multiphysics in direct current method forward modeling. Procedia Earth and Planetary Science 3: 266-272. Doi: 10.1016/j.proeps.2011.09.093

Simulation and Implementation of an Induction Heating System for Heating Brittle Thin Metal Sheets by Various Excitation Current Frequencies

Year 2024, Volume: 16 Issue: 2, 896 - 909, 30.06.2024
https://doi.org/10.29137/umagd.1439051

Abstract

The induction heating process is a highly nonlinear problem due to its connection with various factors. The complex nature of this issue presents a notable difficulty for mathematical analysis and requires a simplification. Additionally, deriving parameters from spatial geometry can be a challenging undertaking in most instances. This paper deals with a simulation model of the induction heating problemThe finite element method within COMSOL Multiphysics is utilized to simulate the induction heating characteristics of fragile metal sheets subjected to different currents and frequencies from an Archimedean spiral coil. This serves as an effective solution for intricate constructions. To distinguish between partial influences, the coil model is modified to closely mirror the actual coil's geometry. The simulation process includes two phases. The former situation is attained by evaluating heating process by gradually increasing the excitation current frequency in frequency domain analysis and the latter scenario is achieved by implementing constant frequency current in a frequency transient condition and assessing the heating procedure within the model. Therefore, in both instances, the simulation model offers crucial insights into the nonlinear electromagnetic and thermal properties of the the workpiece material. To confirm the results of the simulation model, a laboratory prototype is constructed, and comparison between experimental temperature measurements and simulation results is conducted.

References

  • Aflyatunov, R. R., Khazieva, R. T., & Vasilyev, P.I. (2022). Development and research of an induction heating system for a long pipeline. Journal of Physics: Conference Series, 2182(1). IOP Publishing. Doi: 10.1088/1742-6596/2182/1/012039
  • Aydemir, M. T., Zafarmand, F., Uslu, A., Ünver, H. M., Baranoğlu, B., & Aydın, E. (2019). Design and Implementation of an Induction Heating System for Brittle Sheet Metals. International Journal of Natural and Engineering Sciences, 11(3), 29–33. Retrieved from https://ijnes.org/index.php/ijnes/article/view/300
  • Baranoğlu, B., Özbek, M. E., & Aydın, E. (2020). İndüksiyon ön ısıtmalı bir elektromanyetik darbe şekillendirme sisteminin deneysel analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi C, 35(4), 2101-2112, Doi:10.17341/gazimmfd.605773
  • Bermúdez, A., Gómez, D., Muñiz, M.C., & Salgado, P. (2007). Transient numerical simulation of a thermo electrical problem in cylindrical induction heating furnaces. Advances in Computational Mathematics 26: 39–62. Doi: 10.1007/s10444-005-7470-9
  • Bocharova, O., Tynchenko, Vadim., Bocharov, A., Oreshenko, T., Murygin, A., & Panfilov, I. (2019). Induction heating simulation of the waveguide assembly elements. Journal of Physics: Conference Series. 1353. 012040. Doi 10.1088/1742-6596/1353/1/012040
  • Dalaee, M., Gloor, L., Leinenbach, Ch., & Wegener, K. (2019) Experimental and numerical study of the influence of induction heating process on build rates Induction Heating-assisted laser Direct Metal Deposition (IH-DMD). Surface and Coatings Technology 384: 125275. Doi: 10.1016/j.surfcoat.2019.125275
  • De Sousa, W.T.B., Polasek, A., Dias, R., C.F.T, M., & De Andrade, R. (2014). Thermal–electrical analogy for simulations of superconducting fault current limiters. Cryogenics 62: 97-109. Doi: 10.1016/j.cryogenics.2014.04.015
  • Dou, Q. (2022). Summary of Research on Electromagnetic Induction Heating Temperature Control Method under the Background of Internet Convergence. 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, pp. 38-41, Doi: 10.1109/ICIRCA54612.2022.9985648
  • Esteve, V., Jordan, J., Sanchis, E., Dede, E.J., Maset, E., Ejea, J.B., & Ferreres, A. (2015). Enhanced Pulse-Density-Modulated Power Control for High Frequency Induction Heating Inverters. IEEE Transactions on Industrial Electronics. 62. 1-1. Doi: 10.1109/TIE.2015.2436352
  • Gholami, M., Verougstraete, B., Vanoudenhoven, R., Baron, G.V., Van Assche, T., & Denayer, J. F.M. (2022). Induction heating as an alternative electrified heating method for carbon capture process. Chemical Engineering Journal 431(4), 1385-8947. Doi: 10.1016/j.cej.2021.133380
  • Istardi, D., & Triwinarko, A. (2011). Induction Heating Process Design Using COMSOL® Multiphysics Software, ISSN: 1693-6930, Telkomnika, 9(2), August, pp. 327-334. Doi:10.12928/telkomnika.v9i2.704
  • Jinkun, M., Guangyu, Zh., Yidan, Y., & Jingquan, L. (2021). COMSOL Simulation for Design of Induction Heating System in VULCAN Facility. Science and Technology of Nuclear Installations, Article ID 9922503, 12 pages, Doi: 10.1155/2021/9922503
  • Kennedy M. W., Akhtar, S., Bakken, J. A., & Aune R. E. (2011). Analytical and Experimental validation of electromagnetic simulations using COMSOL re Inductance induction heating and magnetic field, Comsol Conference, Stuttgart, Germany
  • Kennedy, M., Akhtar, S., & Bakken, J., & Aune, R. (2011). Analytical and Experimental Validation of Electromagnetic Simulations Using COMSOL®, re Inductance, Induction Heating and Magnetic Fields. COMSOL users’ conference, Stuttgart, Germany
  • Liu H, Rao J (2009). Coupled modeling of electromagnetic-thermal problem in induction heating process considering material operties. In 2009 International Conference on Information Engineering and Computer Science (pp. 1-4). IEEE
  • Ludtke, U., & Schulze, D. (2001). FEM software for simulation of heating by internal sources, Proc. of HIS-01 Int. Seminar, Padua, Italy, Sept. 12-14.
  • Miyake, D., Umetani, K., Kawahara, S., Ishihara, M., & Hiraki, E. (2022) High-Efficiency Solenoid Coil Structure for Induction Heating of Cylindrical Heating Object. 2022 IEEE 31st International Symposium on Industrial Electronics (ISIE), Anchorage, AK, USA, 307-313, Doi: 10.1109/ISIE51582.2022.9831459
  • Najafi, E., & Yatim, A. H. (2011). Design and implementation of a new multilevel inverter topology. IEEE transactions on industrial electronics 59(11): 4148-4154. Doi:10.1109/TIE.2011.2176691
  • Qu, H.P., Lang, Y.P., Yao, C.F., Chen, H.T., & Yang, C.Q. (2013). The effect of heat treatment on recrystallized microstructure, precipitation and ductility of hot rolled Fe-Cr-Al-REM ferritic stainless steel sheets, Materials Science and Engineering: A, 562, 9-16. Doi: 10.1016/j.msea.2012.11.008
  • Sankar, S., Ajith, G., & Ramesan, M. T. (2022). Copper alumina@ poly (aniline-co-indole) nanocomposites: synthesis, characterization, electrical properties and gas sensing applications. RSC advances 12(27): 17637-17644. Doi: 10.1039/D2RA02213C
  • Segura, G. M (2012). Induction Heating Converter’s Design, Control and Modelling Applied to Continuous Wire Heating, Doctoral Dissertation, Universitat Politecnica de Catalunya, Barcelona, Spain
  • Waluyo, Ratna, S., & Kurniadi, M. R. (2022). Induction Heating Stove Prototype of 130 kHz using Arduino Uno. In Electrotehnica, Electronica, Automatica (EEA) 70(1), 39-50, ISSN 1582-5175. Doi: 10.46904/eea.22.70.1.1108005
  • Xiaolong, W., Hui, Y., Guangliang, L., & Zhao, Z. (2011). The application of COMSOL multiphysics in direct current method forward modeling. Procedia Earth and Planetary Science 3: 266-272. Doi: 10.1016/j.proeps.2011.09.093
There are 23 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other), Power Electronics
Journal Section Articles
Authors

Sude Hatem 0000-0003-2215-8207

Early Pub Date June 30, 2024
Publication Date June 30, 2024
Submission Date February 18, 2024
Acceptance Date June 11, 2024
Published in Issue Year 2024 Volume: 16 Issue: 2

Cite

APA Hatem, S. (2024). Simulation and Implementation of an Induction Heating System for Heating Brittle Thin Metal Sheets by Various Excitation Current Frequencies. International Journal of Engineering Research and Development, 16(2), 896-909. https://doi.org/10.29137/umagd.1439051

All Rights Reserved. Kırıkkale University, Faculty of Engineering.