Research Article
BibTex RIS Cite

Effect of Different Heat Pipe Lengths on Heat Transfer in Battery Cooling Systems

Year 2025, Volume: 17 Issue: 1, 115 - 125

Abstract

Nowadays, electric vehicles have become widespread all over the world. Although lithium-ion batteries, which are one of the most commonly used battery types in electric vehicles, have many advantages, they release high amounts of heat during operation, which causes the battery temperature to increase, which in turn causes performance and safety problems. In order to eliminate these problems and keep the batteries in the optimum temperature range, heat pipe systems have been used in recent years and the effect of heat pipe systems on battery cooling performance has been examined in many studies. In this study, battery modules formed with heat pipes of different lengths, 15 cm and 17 cm, were examined at different discharge rates as 1C, 3C and 5C in order to examine the effect of heat pipe length on battery cooling performance. It was observed that the short heat pipe system reduced the maximum battery surface temperature from 23.19°C to 22.93°C at 1C discharge rate, from 29.26°C to 28.94°C at 3C discharge rate, and from 34.12°C to 33.89°C at 5C discharge rate. It was calculated that the temperature difference between the evaporator and condenser sections of the heat pipe decreased from 1.04 °C to 0.83 °C at 1C discharge rate, from 5.36 °C to 4.29 °C at 3C discharge rate, and from 14.91 °C to 11.93 °C at 5C discharge rate in the short heat pipe system compared to the long heat pipe system, and it was determined that the temperature difference between the evaporator and condenser sections was 20% less in the short pipe system, thus faster cooling.

References

  • Behi, H., Karimi, D., Behi, M., Ghanbarpour, M., Jaguemont, J., Sokkeh, M. A., ... & Van Mierlo, J. (2020). A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles. Applied Thermal Engineering, 174, 115280.
  • Belov, D., Yang, M. H. (2008). Failure mechanism of Li-ion battery at overcharge conditions. Journal of Solid State Electrochemistry, 12, 885-894.
  • Chen, K., Hou, J., Song, M., Wang, S., Wu, W., & Zhang, Y. (2021). Design of battery thermal management system based on phase change material and heat pipe. Applied Thermal Engineering, 188, 116665.
  • Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. (2011). Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 4(9), 3243-3262.
  • Faghri, A. (1995). Heat Pipe Science and Technology, Taylor & Francis. 32-35.
  • Ghanbarpourgeravi, M. (2017). Investigation of Thermal Performance of Cylindrical Heat pipes Operated with Nanofluids (Doctoral dissertation, KTH Royal Institute of Technology).
  • Greco, A., Jiang, X. & Cao, D. (2015). An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite, J. Power Sources, 278, 50–68.
  • Jouhara, H., Khordehgah, N., Serey, N., Almahmoud, S., Lester, S. P., Machen, D. & Wrobel, L. (2019). Applications and thermal management of rechargeable batteries for industrial applications. Energy, 170, 849-861.
  • Karimi, D., Hosen, M. S., Behi, H., Khaleghi, S., Akbarzadeh, M., Van Mierlo, J., & Berecibar, M. (2021). A hybrid thermal management system for high power lithium-ion capacitors combining heat pipe with phase change materials. Heliyon, 7(8).
  • Mahamud, R., Park, C. (2011). Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. Journal of Power Sources, 196(13), 5685-5696.
  • Maleki, H., Howard, J. N. (2006). Effects of over discharge on performance and thermal stability of a Li-ion cell. Journal of power sources, 160(2), 1395-1402.
  • Park, C., Jaura, A. K. (2003). Dynamic thermal model of li-ion battery for predictive behaviour in hybrid and fuel cell vehicles (No. 2003-01-2286). SAE Technical Paper.
  • Pesaran, A. A. (2001). Battery thermal management in EV and HEVs: issues and solutions. Battery Man, 43(5), 34-49.
  • Pesaran, A. A. (2002). Battery thermal models for hybrid vehicle simulations. Journal of power sources, 110(2), 377-382.
  • Ramadass, P. H. B. W. R. P. B., Haran, B., White, R. & Popov, B. N. (2002). Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance. Journal of power sources, 112(2), 606-613.
  • Rao, Z., Qian, Z., Kuang, Y. & Li, Y. (2017). Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface. Applied Thermal Engineering, 123, 1514-1522.
  • Song, L., Zhang, H. & Yang, C. (2019). Thermal analysis of conjugated cooling configurations using phase change material and liquid cooling techniques for a battery module. International Journal of Heat and Mass Transfer, 133, 827-841.
  • Tiari, S., Qiu, S. & Mahdavi, M. (2016). Discharging process of a finned heat pipe–assisted thermal energy storage system with high temperature phase change material. Energy Conversion and Management, 118, 426-437.
  • Torun, E. & Buyruk, E. (2024). Lityum İyon Pillerde Farklı Deşarj Hızlarında Oluşan Sıcaklık Profillerinin Deneysel ve Sayısal Olarak Karşılaştırılması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(2), 622-637.
  • Url-1 <https://www.nrel.gov/docs/fy13osti/58145.pdf>, alındığı tarih: 20.12.2022
  • Wu, W., Wang, S., Wu, W., Chen, K., Hong, S., & Lai, Y. (2019). A critical review of battery thermal performance and liquid based battery thermal management. Energy conversion and management, 182, 262-281.
  • Zhang, W., Qiu, J., Yin, X., & Wang, D. (2020). A novel heat pipe assisted separation type battery thermal management system based on phase change material. Applied Thermal Engineering, 165, 114571.

Batarya Soğutma Sistemlerinde Farklı Isı Borusu Uzunluklarının Isı Transferine Etkisi

Year 2025, Volume: 17 Issue: 1, 115 - 125

Abstract

Günümüzde elektrikli araçlar tüm dünyada yaygın olarak kullanılmaya başlanmıştır. Elektrikli araçlarda en çok kullanılan batarya çeşitlerinden biri olan lityum iyon bataryaların birçok avantajı olmasına rağmen çalışma esnasında yüksek miktarda ısı açığa çıkarmaları batarya sıcaklığının artmasına, bu durum ise performans ve güvenlik sorunlarına neden olmaktadır. Bu sorunları bertaraf edebilmek ve bataryaları optimum sıcaklık aralığında tutabilmek için son yıllarda ısı borulu sistemler kullanılmaya başlanmış ve ısı borulu sistemlerin batarya soğutma performansına etkisi bir çok çalışmada incelenmiştir. Bu çalışmada, ısı borusu uzunluğunun batarya soğutma performansına etkisini inceleyebilmek için 15 cm ve 17 cm olmak üzere farklı uzunluklardaki ısı boruları ile oluşturulan batarya modülleri 1C, 3C ve 5C olmak üzere farklı deşarj hızlarında incelenmiştir. Kısa ısı borulu sistemin maksimum batarya yüzey sıcaklığını 1C deşarj hızında 23,19°C’den 22,93°C’ye, 3C deşarj hızında 29,26°C’den 28,94°C’ye ve 5C deşarj hızında 34,12°C’den 33,89°C’ye düşürdüğü görülmüştür. Isı borusunun buharlaştırıcı ve yoğuşturucu kısımları arasındaki sıcaklık farkının ise kısa ısı borulu sistemde uzun ısı borulu sisteme göre 1C deşarj hızında 1,04 °C’den 0,83 °C’ye, 3C deşarj hızında 5,36 °C’den 4,29 °C’ye, 5C deşarj hızında ise 14,91 °C’den 11,93 °C’ye düştüğü hesaplanarak buharlaştırıcı ve yoğuşturucu kısımlar arasındaki sıcaklık farkının kısa borulu sistemde %20 daha az olduğu dolayısıyla daha hızlı soğutma yaptığı tespit edilmiştir.

References

  • Behi, H., Karimi, D., Behi, M., Ghanbarpour, M., Jaguemont, J., Sokkeh, M. A., ... & Van Mierlo, J. (2020). A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles. Applied Thermal Engineering, 174, 115280.
  • Belov, D., Yang, M. H. (2008). Failure mechanism of Li-ion battery at overcharge conditions. Journal of Solid State Electrochemistry, 12, 885-894.
  • Chen, K., Hou, J., Song, M., Wang, S., Wu, W., & Zhang, Y. (2021). Design of battery thermal management system based on phase change material and heat pipe. Applied Thermal Engineering, 188, 116665.
  • Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. (2011). Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 4(9), 3243-3262.
  • Faghri, A. (1995). Heat Pipe Science and Technology, Taylor & Francis. 32-35.
  • Ghanbarpourgeravi, M. (2017). Investigation of Thermal Performance of Cylindrical Heat pipes Operated with Nanofluids (Doctoral dissertation, KTH Royal Institute of Technology).
  • Greco, A., Jiang, X. & Cao, D. (2015). An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite, J. Power Sources, 278, 50–68.
  • Jouhara, H., Khordehgah, N., Serey, N., Almahmoud, S., Lester, S. P., Machen, D. & Wrobel, L. (2019). Applications and thermal management of rechargeable batteries for industrial applications. Energy, 170, 849-861.
  • Karimi, D., Hosen, M. S., Behi, H., Khaleghi, S., Akbarzadeh, M., Van Mierlo, J., & Berecibar, M. (2021). A hybrid thermal management system for high power lithium-ion capacitors combining heat pipe with phase change materials. Heliyon, 7(8).
  • Mahamud, R., Park, C. (2011). Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. Journal of Power Sources, 196(13), 5685-5696.
  • Maleki, H., Howard, J. N. (2006). Effects of over discharge on performance and thermal stability of a Li-ion cell. Journal of power sources, 160(2), 1395-1402.
  • Park, C., Jaura, A. K. (2003). Dynamic thermal model of li-ion battery for predictive behaviour in hybrid and fuel cell vehicles (No. 2003-01-2286). SAE Technical Paper.
  • Pesaran, A. A. (2001). Battery thermal management in EV and HEVs: issues and solutions. Battery Man, 43(5), 34-49.
  • Pesaran, A. A. (2002). Battery thermal models for hybrid vehicle simulations. Journal of power sources, 110(2), 377-382.
  • Ramadass, P. H. B. W. R. P. B., Haran, B., White, R. & Popov, B. N. (2002). Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance. Journal of power sources, 112(2), 606-613.
  • Rao, Z., Qian, Z., Kuang, Y. & Li, Y. (2017). Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface. Applied Thermal Engineering, 123, 1514-1522.
  • Song, L., Zhang, H. & Yang, C. (2019). Thermal analysis of conjugated cooling configurations using phase change material and liquid cooling techniques for a battery module. International Journal of Heat and Mass Transfer, 133, 827-841.
  • Tiari, S., Qiu, S. & Mahdavi, M. (2016). Discharging process of a finned heat pipe–assisted thermal energy storage system with high temperature phase change material. Energy Conversion and Management, 118, 426-437.
  • Torun, E. & Buyruk, E. (2024). Lityum İyon Pillerde Farklı Deşarj Hızlarında Oluşan Sıcaklık Profillerinin Deneysel ve Sayısal Olarak Karşılaştırılması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(2), 622-637.
  • Url-1 <https://www.nrel.gov/docs/fy13osti/58145.pdf>, alındığı tarih: 20.12.2022
  • Wu, W., Wang, S., Wu, W., Chen, K., Hong, S., & Lai, Y. (2019). A critical review of battery thermal performance and liquid based battery thermal management. Energy conversion and management, 182, 262-281.
  • Zhang, W., Qiu, J., Yin, X., & Wang, D. (2020). A novel heat pipe assisted separation type battery thermal management system based on phase change material. Applied Thermal Engineering, 165, 114571.
There are 22 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Articles
Authors

Emre Torun 0000-0003-4823-7843

Ertan Buyruk 0000-0002-6539-7614

Early Pub Date March 3, 2025
Publication Date
Submission Date April 29, 2024
Acceptance Date October 10, 2024
Published in Issue Year 2025 Volume: 17 Issue: 1

Cite

APA Torun, E., & Buyruk, E. (2025). Effect of Different Heat Pipe Lengths on Heat Transfer in Battery Cooling Systems. International Journal of Engineering Research and Development, 17(1), 115-125. https://doi.org/10.29137/umagd.1475281

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.