Research Article
BibTex RIS Cite

Climate Change and Its Effects on Concrete Pouring Activity: The Case of Kırıkkale

Year 2025, Volume: 17 Issue: 2, 257 - 271, 15.07.2025
https://doi.org/10.29137/umagd.1500003

Abstract

Environmental factors, such as low and high temperatures, significantly impact the strength, durability, and fresh properties of conventional concrete. These conditions not only affect the strength and durability characteristics of concrete but also its transportation, placement, and curing conditions. Concrete, when properly designed, cured, and placed, can be a highly durable construction material. However, certain physical and chemical influences can hinder concrete from achieving its expected strength and durability.
This study examines how climate parameters, specifically maximum temperature, minimum temperature, and precipitation, and their threshold values, will affect concrete pouring activities in Kırıkkale, Turkey, in the future. The findings suggest that as air temperatures rise, concrete pouring performance is expected to increase during winter months, when pouring was previously difficult or impossible. However, in summer months, rising maximum temperatures could lead to decreased performance in concrete pouring activities unless appropriate measures are taken.

References

  • Ahmed, K., Sachindra, D. A., Shahid, S., Demirel, M. C., & Chung, E. S. (2019). Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics. Hydrology and Earth System Sciences, 23(10), 4803–4824.
  • Aktürk, G., Zeybekoğlu, U., & Yıldız, O. (2022). SPI ve SPEI Yöntemleri ile Kuraklık Araştırması: Kırıkkale Örneği. International Journal of Engineering Research and Development, 14(2), 762–776. https://doi.org/10.29137/umagd.1100886
  • Alarcón, L. F., Diethelm, S., Rojo, O., & Calderón, R. (2005, July 25–27). Assessing the impacts of implementing lean construction. In Proceedings of the 13th International Group for Lean Construction Annual Conference (pp. 387–393). International Group on Lean Construction.
  • American Concrete Institute. (1985). Manual of concrete practice, Part 1. Detroit, MI: American Concrete Institute.
  • Bağçaci, S., Yucel, I., Duzenli, E., & Yilmaz, M. T. (2021). Intercomparison of the expected change in the temperature and the precipitation retrieved from CMIP6 and CMIP5 climate projections: A Mediterranean hot spot case, Turkey. Atmospheric Research, 256, 105576. https://doi.org/10.1016/j.atmosres.2021.105576
  • Ballesteros-Pérez, P., Smith, S. T., Lloyd-Papworth, J. G., & Cooke, P. (2018). Incorporating the effect of weather in construction scheduling and management with sine wave curves: Application in the United Kingdom. Construction Management and Economics, 36(12), 666–682. https://doi.org/10.1080/01446193.2018.1478109
  • Bayar, A. S., Yılmaz, M. T., Yücel, I., & Dirmeyer, P. (2023). CMIP6 Earth System Models project greater acceleration of climate zone change due to stronger warming rates. Earth’s Future, 11, e2022EF002972. https://doi.org/10.1029/2022ef002972
  • Cannon, A. J., Sobie, S. R., & Murdock, T. Q. (2015). Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? Journal of Climate, 28(17), 6938–6959.
  • Checa-Garcia, R., Hegglin, M. I., Kinnison, D., Plummer, D. A., & Shine, K. P. (2018). Historical tropospheric and stratospheric ozone radiative forcing using the CMIP6 database. Geophysical Research Letters, 45(7), 3264–3273. https://doi.org/10.1002/2017GL076770
  • Chen, L., Wang, G., Miao, L., et al. (2021). Future drought in CMIP6 projections and the socioeconomic impacts in China. International Journal of Climatology, 41(7), 4151–4170. https://doi.org/10.1002/joc.7064
  • Cooper, D. F., Grey, S., Raymond, G., & Walker, P. (2005). Project risk management guidelines: Managing risk in large projects and complex procurements. John Wiley & Sons.
  • Elkhadırı, I., Palacios, M., & Puertas, F. (2009). Effect of curing temperature on cement hydration. Ceramics – Silikáty, 53(2), 65–75.
  • El-Rayes, K., & Moselhi, O. (2001). Impact of rainfall on the productivity of highway construction. Journal of Construction Engineering and Management, 127(2), 125–131.
  • Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
  • Fashina, A. A., Omar, M. A., Sheikh, A. A., & Fakunle, F. F. (2021). Exploring the significant factors that influence delays in construction projects in Hargeisa. Heliyon, 7, e06826. https://doi.org/10.1016/j.heliyon.2021.e06826
  • Fu, Y., Lin, Z., & Guo, D. (2020). Improvement of the simulation of the summer East Asian westerly jet from CMIP5 to CMIP6. Atmospheric and Oceanic Science Letters, 13, 550–558.
  • Grose, M. R., Narsey, S., Delage, F., Dowdy, A. J., Bador, M., Boschat, G., Chung, C. T., Kajtar, J. B., Rauniyar, S. P., & Freund, M. B., et al. (2020). Insights from CMIP6 for Australia’s future climate. Earth’s Future, 8, e2019EF001469.
  • Gumus, B., Oruc, S., Yucel, I., & Yilmaz, M. T. (2023). Impacts of climate change on extreme climate indices in Türkiye driven by high-resolution downscaled CMIP6 climate models. Sustainability, 15, 7202. https://doi.org/10.3390/su15097202
  • Güzelküçük, S., & Demir, İ. (2019). Perlit esaslı geopolimer kompozitlere kür süresi ve sıcaklığın etkisi. International Journal of Engineering Research and Development, 11(2), 730–737. https://doi.org/10.29137/umagd.558983
  • Huang, B., Gao, X., Xu, X., Song, J., Geng, Y., Sarkis, J., Fishman, T., Kua, H., & Nakatani, J. (2020). A life cycle thinking framework to mitigate the environmental impact of building materials. One Earth, 3.
  • IPCC (Intergovernmental Panel on Climate Change). (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of Working Groups I and II of the Intergovernmental Panel on Climate Change (Field, C. B., Barros, V., Stocker, T. F., Dahe, Q., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., & Midgley, P. M., Eds.). Cambridge University Press.
  • IPCC (Intergovernmental Panel on Climate Change). (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M., Eds.). Cambridge University Press.
  • IPCC (Intergovernmental Panel on Climate Change). (2014a). Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., & White, L. L., Eds.). Cambridge University Press.
  • IPCC (Intergovernmental Panel on Climate Change). (2014b). Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Core Writing Team, Pachauri, R. K., & Meyer, L., Eds.). IPCC.
  • IPCC. (2022). Climate change 2022: Mitigation of climate change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://doi.org/10.1017/9781009157926
  • Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., & Thépaut, J.-N. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13(9), 4349–4383. https://doi.org/10.5194/essd-13-4349-2021
  • Johnson, R. M., & Babu, R. I. I. (2020). Time and cost overruns in the UAE construction industry: A critical analysis. International Journal of Construction Management, 20(5), 402–411. https://doi.org/10.1080/15623599.2018.1484864
  • Kay, A. L., Rudd, A. C., Fry, M., Nash, G., & Allen, S. (2021). Climate change impacts on peak river flows: Combining national-scale hydrological modelling and probabilistic projections. Climate Risk Management, 31, 100263. https://doi.org/10.1016/j.crm.2020.100263
  • Keggenhoff I, Elizbarashvili M, Amiri-Farahani A, King L (2014) Trends in daily temperature and precipitation extremes over Georgia, 1971–2010. Weather Clim Extrem 4:75–85. https://doi.org/10.1016/j.wace.2014.05.001
  • Khan, M. I., & Abbas, Y. M. (2017). Curing optimization for strength and durability of silica fume and fuel ash concretes under hot weather conditions. Construction and Building Materials, 157, 1092–1105.
  • Liang, Z., Zhou, H., Zhao, C., Wang, F., & Zhou, Y. (2023). Experimental and numerical study of the influence of solar radiation on the surface temperature field of low-heat concrete in a pouring block. Buildings, 13(6), 1519. https://doi.org/10.3390/buildings13061519
  • Liu, X., Li, C., Zhao, T., & Han, L. (2020). Future changes of global potential evapotranspiration simulated from CMIP5 to CMIP6 models. Atmospheric and Oceanic Science Letters, 13, 568–575. https://doi.org/10.1080/16742834.2020.1824983
  • Loch, C. H., DeMeyer, A., & Pich, M. T. (2006). Managing the unknown: A new approach to managing high uncertainty and risk in projects. John Wiley & Sons.
  • Mondal, S. K., Su, B., Huang, J., Zhai, J., Wang, G., Kundzewicz, Z. W., et al. (2024). Climate change will aggravate South Asian cropland exposure to drought by the middle of 21st century. Earth’s Future, 12, e2023EF003872. https://doi.org/10.1029/2023EF003872
  • Medeiros-Junior, R. A., & Reichert, T. A. (2024). Impact of climate change on the service life of concrete structures. In Eco-efficient repair and rehabilitation of concrete infrastructures. Elsevier. https://doi.org/10.1016/B978-0-443-13470-8.00006-X
  • Moselhi, O., & El-Rayes, K. (2002). Analyzing weather-related construction claims. Cost Engineering, 44, 12–19.
  • Myhre, G., Alterskjær, K., Stjern, C. W., Hodnebrog, Ø., Marelle, L., Samset, B. H., & Stohl, A. (2019). Frequency of extreme precipitation increases extensively with event rareness under global warming. Scientific Reports, 9, 16063. https://doi.org/10.1038/s41598-019-52277-4
  • Nasir, M., Al-Amoudi, O. S. B., Al-Gahtani, H. J., & Maslehuddin, M. (2016). Effect of casting temperature on strength and density of plain and blended cement concretes prepared and cured under hot weather conditions. Construction and Building Materials, 112, 529–537.
  • Nguyen, L. D., Kneppers, J., García de Soto, B., & Ibbs, W. (2010). Analysis of adverse weather for excusable delays. Journal of Construction Engineering and Management, 136, 1258–1267.
  • Niu, X., Li, Q., Liu, W., & Hu, Y. (2020). Effects of ambient temperature, relative humidity and wind speed on interlayer properties of dam concrete. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2020.119791
  • Nordling, K., Fahrenbach, N., & Samset, B. (2024). Climate variability can outweigh the influence of climate mean changes for extreme precipitation under global warming. EGUsphere [preprint]. https://doi.org/10.5194/egusphere-2024-1068
  • O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., ... & Lowe, J. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9, 3461–3482. https://doi.org/10.5194/gmd-9-3461-2016
  • Ortiz, J., Aguado, A., Agullo, L., & García, T. (2005). Influence of environmental temperatures on the concrete compressive strength: Simulation of hot and cold weather conditions. Cement and Concrete Research, 35, 1970–1979.
  • Oruc, S. (2022). Performance of bias corrected monthly CMIP6 climate projections with different reference period data in Turkey. Acta Geophysica, 70, 777–789. https://doi.org/10.1007/s11600-022-00731-9
  • Oruc, S., Dikbas, H. A., Gumus, B., & Yucel, I. (2024). The impact of climate change on construction activity performance. Buildings, 14(2), 372. https://doi.org/10.3390/buildings14020372
  • Qin, J., Su, B., Tao, H., et al. (2021). Projection of temperature and precipitation under SSPs-RCPs scenarios over northwest China. Frontiers of Earth Science, 15, 23–37. https://doi.org/10.1007/s11707-020-0847-8
  • Richardson, M. (2007). Degradation of concrete in cold weather conditions. In Durability of Concrete and Cement Composites (pp. 282–315). Woodhead Publishing.
  • Rizzuto, P. J., Kamal, M., Elsayad, H., Bashandy, A., Etman, Z., Roos, M. N. A., & Shaaban, I. G. (2020). Effect of self-curing admixture on concrete properties in hot climate conditions. Construction and Building Materials, 261. https://doi.org/10.1016/j.conbuildmat.2020.119933
  • Rogalska, M., Czarnigowska, A., Hejducki, Z., & Nahurny, T. O. (2006). Methods of estimation of building processes duration including weather risk factors. Building Review, 1, 37–42. (In Polish)
  • Savva, P., Nicolaides, D., & Petrou, M. (2018). Internal curing for mitigating high temperature concreting effects. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2018.04.032
  • Shi, T., Deng, C., Zhao, J., Ding, P., & Fan, Z. (2022). Temperature field of concrete cured in winter conditions using thermal control measures. Advances in Materials Science and Engineering. https://doi.org/10.1155/2022/7255601
  • Stouffer, R. J., Eyring, V., Meehl, G. A., Bony, S., Senior, C. A., Stevens, B., & Taylor, K. E. (2017). CMIP5 scientific gaps and recommendations for CMIP6. Bulletin of the American Meteorological Society, 98, 95–105. https://doi.org/10.1175/bams-d-15-00013.1
  • TOBB Kırıkkale Ticaret ve Sanayi Odası. (2022). 2022–2025 Stratejik Plan. https://www.kirikkaletso.org.tr/ktso/dosyalar/STRATEJ%C4%B0K%20PLAN%202022-2025.pdf
  • Türk Standardları Enstitüsü. (2012). TS 1248 Betonun hazırlanması, dökümü ve bakım kuralları - Anormal hava şartlarında.
  • Wang, J. (2021). Test and simulation of concrete surface factor under different wind speeds. Construction and Building Materials, 300, 124019. https://doi.org/10.1016/j.conbuildmat.2021.124019
  • Wyser, K., Kjellström, E., Koenigk, T., Martins, H., & Doescher, R. (2020). Warmer climate projections in EC-Earth3-Veg: The role of changes in the greenhouse gas concentrations from CMIP5 to CMIP6. Environmental Research Letters, 15, 054020. https://doi.org/10.1088/1748-9326/ab81c2

Climate Change and Its Effects on Concrete Pouring Activity: The Case of Kırıkkale

Year 2025, Volume: 17 Issue: 2, 257 - 271, 15.07.2025
https://doi.org/10.29137/umagd.1500003

Abstract

Environmental factors, such as low and high temperatures, significantly affect the strength, durability, and fresh properties of conventional concrete. These conditions not only affect the strength and durability characteristics of concrete but also its transportation, placement, and curing conditions. When properly designed, cured, and placed, concrete can be a highly durable construction material. However, certain physical and chemical influences can prevent concrete from achieving its expected strength and durability. This study examines how climate parameters, specifically maximum temperature, minimum temperature, and precipitation, and their threshold values will affect concrete pouring activities in Kırıkkale, Turkey, in the future. The findings suggest that as air temperatures rise, concrete pouring performance is expected to increase during winter months, when pouring is difficult or impossible. However, in the summer months, rising maximum temperatures could lead to decreased performance in concrete pouring activities unless appropriate measures are taken.

References

  • Ahmed, K., Sachindra, D. A., Shahid, S., Demirel, M. C., & Chung, E. S. (2019). Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics. Hydrology and Earth System Sciences, 23(10), 4803–4824.
  • Aktürk, G., Zeybekoğlu, U., & Yıldız, O. (2022). SPI ve SPEI Yöntemleri ile Kuraklık Araştırması: Kırıkkale Örneği. International Journal of Engineering Research and Development, 14(2), 762–776. https://doi.org/10.29137/umagd.1100886
  • Alarcón, L. F., Diethelm, S., Rojo, O., & Calderón, R. (2005, July 25–27). Assessing the impacts of implementing lean construction. In Proceedings of the 13th International Group for Lean Construction Annual Conference (pp. 387–393). International Group on Lean Construction.
  • American Concrete Institute. (1985). Manual of concrete practice, Part 1. Detroit, MI: American Concrete Institute.
  • Bağçaci, S., Yucel, I., Duzenli, E., & Yilmaz, M. T. (2021). Intercomparison of the expected change in the temperature and the precipitation retrieved from CMIP6 and CMIP5 climate projections: A Mediterranean hot spot case, Turkey. Atmospheric Research, 256, 105576. https://doi.org/10.1016/j.atmosres.2021.105576
  • Ballesteros-Pérez, P., Smith, S. T., Lloyd-Papworth, J. G., & Cooke, P. (2018). Incorporating the effect of weather in construction scheduling and management with sine wave curves: Application in the United Kingdom. Construction Management and Economics, 36(12), 666–682. https://doi.org/10.1080/01446193.2018.1478109
  • Bayar, A. S., Yılmaz, M. T., Yücel, I., & Dirmeyer, P. (2023). CMIP6 Earth System Models project greater acceleration of climate zone change due to stronger warming rates. Earth’s Future, 11, e2022EF002972. https://doi.org/10.1029/2022ef002972
  • Cannon, A. J., Sobie, S. R., & Murdock, T. Q. (2015). Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? Journal of Climate, 28(17), 6938–6959.
  • Checa-Garcia, R., Hegglin, M. I., Kinnison, D., Plummer, D. A., & Shine, K. P. (2018). Historical tropospheric and stratospheric ozone radiative forcing using the CMIP6 database. Geophysical Research Letters, 45(7), 3264–3273. https://doi.org/10.1002/2017GL076770
  • Chen, L., Wang, G., Miao, L., et al. (2021). Future drought in CMIP6 projections and the socioeconomic impacts in China. International Journal of Climatology, 41(7), 4151–4170. https://doi.org/10.1002/joc.7064
  • Cooper, D. F., Grey, S., Raymond, G., & Walker, P. (2005). Project risk management guidelines: Managing risk in large projects and complex procurements. John Wiley & Sons.
  • Elkhadırı, I., Palacios, M., & Puertas, F. (2009). Effect of curing temperature on cement hydration. Ceramics – Silikáty, 53(2), 65–75.
  • El-Rayes, K., & Moselhi, O. (2001). Impact of rainfall on the productivity of highway construction. Journal of Construction Engineering and Management, 127(2), 125–131.
  • Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
  • Fashina, A. A., Omar, M. A., Sheikh, A. A., & Fakunle, F. F. (2021). Exploring the significant factors that influence delays in construction projects in Hargeisa. Heliyon, 7, e06826. https://doi.org/10.1016/j.heliyon.2021.e06826
  • Fu, Y., Lin, Z., & Guo, D. (2020). Improvement of the simulation of the summer East Asian westerly jet from CMIP5 to CMIP6. Atmospheric and Oceanic Science Letters, 13, 550–558.
  • Grose, M. R., Narsey, S., Delage, F., Dowdy, A. J., Bador, M., Boschat, G., Chung, C. T., Kajtar, J. B., Rauniyar, S. P., & Freund, M. B., et al. (2020). Insights from CMIP6 for Australia’s future climate. Earth’s Future, 8, e2019EF001469.
  • Gumus, B., Oruc, S., Yucel, I., & Yilmaz, M. T. (2023). Impacts of climate change on extreme climate indices in Türkiye driven by high-resolution downscaled CMIP6 climate models. Sustainability, 15, 7202. https://doi.org/10.3390/su15097202
  • Güzelküçük, S., & Demir, İ. (2019). Perlit esaslı geopolimer kompozitlere kür süresi ve sıcaklığın etkisi. International Journal of Engineering Research and Development, 11(2), 730–737. https://doi.org/10.29137/umagd.558983
  • Huang, B., Gao, X., Xu, X., Song, J., Geng, Y., Sarkis, J., Fishman, T., Kua, H., & Nakatani, J. (2020). A life cycle thinking framework to mitigate the environmental impact of building materials. One Earth, 3.
  • IPCC (Intergovernmental Panel on Climate Change). (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of Working Groups I and II of the Intergovernmental Panel on Climate Change (Field, C. B., Barros, V., Stocker, T. F., Dahe, Q., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., & Midgley, P. M., Eds.). Cambridge University Press.
  • IPCC (Intergovernmental Panel on Climate Change). (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M., Eds.). Cambridge University Press.
  • IPCC (Intergovernmental Panel on Climate Change). (2014a). Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., & White, L. L., Eds.). Cambridge University Press.
  • IPCC (Intergovernmental Panel on Climate Change). (2014b). Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Core Writing Team, Pachauri, R. K., & Meyer, L., Eds.). IPCC.
  • IPCC. (2022). Climate change 2022: Mitigation of climate change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://doi.org/10.1017/9781009157926
  • Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., & Thépaut, J.-N. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13(9), 4349–4383. https://doi.org/10.5194/essd-13-4349-2021
  • Johnson, R. M., & Babu, R. I. I. (2020). Time and cost overruns in the UAE construction industry: A critical analysis. International Journal of Construction Management, 20(5), 402–411. https://doi.org/10.1080/15623599.2018.1484864
  • Kay, A. L., Rudd, A. C., Fry, M., Nash, G., & Allen, S. (2021). Climate change impacts on peak river flows: Combining national-scale hydrological modelling and probabilistic projections. Climate Risk Management, 31, 100263. https://doi.org/10.1016/j.crm.2020.100263
  • Keggenhoff I, Elizbarashvili M, Amiri-Farahani A, King L (2014) Trends in daily temperature and precipitation extremes over Georgia, 1971–2010. Weather Clim Extrem 4:75–85. https://doi.org/10.1016/j.wace.2014.05.001
  • Khan, M. I., & Abbas, Y. M. (2017). Curing optimization for strength and durability of silica fume and fuel ash concretes under hot weather conditions. Construction and Building Materials, 157, 1092–1105.
  • Liang, Z., Zhou, H., Zhao, C., Wang, F., & Zhou, Y. (2023). Experimental and numerical study of the influence of solar radiation on the surface temperature field of low-heat concrete in a pouring block. Buildings, 13(6), 1519. https://doi.org/10.3390/buildings13061519
  • Liu, X., Li, C., Zhao, T., & Han, L. (2020). Future changes of global potential evapotranspiration simulated from CMIP5 to CMIP6 models. Atmospheric and Oceanic Science Letters, 13, 568–575. https://doi.org/10.1080/16742834.2020.1824983
  • Loch, C. H., DeMeyer, A., & Pich, M. T. (2006). Managing the unknown: A new approach to managing high uncertainty and risk in projects. John Wiley & Sons.
  • Mondal, S. K., Su, B., Huang, J., Zhai, J., Wang, G., Kundzewicz, Z. W., et al. (2024). Climate change will aggravate South Asian cropland exposure to drought by the middle of 21st century. Earth’s Future, 12, e2023EF003872. https://doi.org/10.1029/2023EF003872
  • Medeiros-Junior, R. A., & Reichert, T. A. (2024). Impact of climate change on the service life of concrete structures. In Eco-efficient repair and rehabilitation of concrete infrastructures. Elsevier. https://doi.org/10.1016/B978-0-443-13470-8.00006-X
  • Moselhi, O., & El-Rayes, K. (2002). Analyzing weather-related construction claims. Cost Engineering, 44, 12–19.
  • Myhre, G., Alterskjær, K., Stjern, C. W., Hodnebrog, Ø., Marelle, L., Samset, B. H., & Stohl, A. (2019). Frequency of extreme precipitation increases extensively with event rareness under global warming. Scientific Reports, 9, 16063. https://doi.org/10.1038/s41598-019-52277-4
  • Nasir, M., Al-Amoudi, O. S. B., Al-Gahtani, H. J., & Maslehuddin, M. (2016). Effect of casting temperature on strength and density of plain and blended cement concretes prepared and cured under hot weather conditions. Construction and Building Materials, 112, 529–537.
  • Nguyen, L. D., Kneppers, J., García de Soto, B., & Ibbs, W. (2010). Analysis of adverse weather for excusable delays. Journal of Construction Engineering and Management, 136, 1258–1267.
  • Niu, X., Li, Q., Liu, W., & Hu, Y. (2020). Effects of ambient temperature, relative humidity and wind speed on interlayer properties of dam concrete. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2020.119791
  • Nordling, K., Fahrenbach, N., & Samset, B. (2024). Climate variability can outweigh the influence of climate mean changes for extreme precipitation under global warming. EGUsphere [preprint]. https://doi.org/10.5194/egusphere-2024-1068
  • O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., ... & Lowe, J. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9, 3461–3482. https://doi.org/10.5194/gmd-9-3461-2016
  • Ortiz, J., Aguado, A., Agullo, L., & García, T. (2005). Influence of environmental temperatures on the concrete compressive strength: Simulation of hot and cold weather conditions. Cement and Concrete Research, 35, 1970–1979.
  • Oruc, S. (2022). Performance of bias corrected monthly CMIP6 climate projections with different reference period data in Turkey. Acta Geophysica, 70, 777–789. https://doi.org/10.1007/s11600-022-00731-9
  • Oruc, S., Dikbas, H. A., Gumus, B., & Yucel, I. (2024). The impact of climate change on construction activity performance. Buildings, 14(2), 372. https://doi.org/10.3390/buildings14020372
  • Qin, J., Su, B., Tao, H., et al. (2021). Projection of temperature and precipitation under SSPs-RCPs scenarios over northwest China. Frontiers of Earth Science, 15, 23–37. https://doi.org/10.1007/s11707-020-0847-8
  • Richardson, M. (2007). Degradation of concrete in cold weather conditions. In Durability of Concrete and Cement Composites (pp. 282–315). Woodhead Publishing.
  • Rizzuto, P. J., Kamal, M., Elsayad, H., Bashandy, A., Etman, Z., Roos, M. N. A., & Shaaban, I. G. (2020). Effect of self-curing admixture on concrete properties in hot climate conditions. Construction and Building Materials, 261. https://doi.org/10.1016/j.conbuildmat.2020.119933
  • Rogalska, M., Czarnigowska, A., Hejducki, Z., & Nahurny, T. O. (2006). Methods of estimation of building processes duration including weather risk factors. Building Review, 1, 37–42. (In Polish)
  • Savva, P., Nicolaides, D., & Petrou, M. (2018). Internal curing for mitigating high temperature concreting effects. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2018.04.032
  • Shi, T., Deng, C., Zhao, J., Ding, P., & Fan, Z. (2022). Temperature field of concrete cured in winter conditions using thermal control measures. Advances in Materials Science and Engineering. https://doi.org/10.1155/2022/7255601
  • Stouffer, R. J., Eyring, V., Meehl, G. A., Bony, S., Senior, C. A., Stevens, B., & Taylor, K. E. (2017). CMIP5 scientific gaps and recommendations for CMIP6. Bulletin of the American Meteorological Society, 98, 95–105. https://doi.org/10.1175/bams-d-15-00013.1
  • TOBB Kırıkkale Ticaret ve Sanayi Odası. (2022). 2022–2025 Stratejik Plan. https://www.kirikkaletso.org.tr/ktso/dosyalar/STRATEJ%C4%B0K%20PLAN%202022-2025.pdf
  • Türk Standardları Enstitüsü. (2012). TS 1248 Betonun hazırlanması, dökümü ve bakım kuralları - Anormal hava şartlarında.
  • Wang, J. (2021). Test and simulation of concrete surface factor under different wind speeds. Construction and Building Materials, 300, 124019. https://doi.org/10.1016/j.conbuildmat.2021.124019
  • Wyser, K., Kjellström, E., Koenigk, T., Martins, H., & Doescher, R. (2020). Warmer climate projections in EC-Earth3-Veg: The role of changes in the greenhouse gas concentrations from CMIP5 to CMIP6. Environmental Research Letters, 15, 054020. https://doi.org/10.1088/1748-9326/ab81c2
There are 56 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Articles
Authors

Sertac Oruc 0000-0003-2906-0771

Selahattin Güzelküçük 0000-0003-2115-5821

Oğuzhan Şahin 0000-0003-2104-5761

Early Pub Date July 4, 2025
Publication Date July 15, 2025
Submission Date December 10, 2024
Acceptance Date April 15, 2025
Published in Issue Year 2025 Volume: 17 Issue: 2

Cite

APA Oruc, S., Güzelküçük, S., & Şahin, O. (2025). Climate Change and Its Effects on Concrete Pouring Activity: The Case of Kırıkkale. International Journal of Engineering Research and Development, 17(2), 257-271. https://doi.org/10.29137/umagd.1500003

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.