Dizel-Fındık Yağı Biyodizel-Bütanol Üçlü Yakıt Karışımlarının Modifiye Edilmemiş Bir Dizel Motorda Potansiyel Alternatif Yakıt Olarak Değerlendirilmesi
Year 2025,
Volume: 17 Issue: 2, 330 - 348, 15.07.2025
Ümit Yüce
,
Melih Can Saydam
,
Batuhan Altundağ
,
Zeki Yılbaşı
,
Hayri Yaman
Abstract
Bu çalışmada, dizel motorlar için potansiyel alternatif yakıt olarak dizel-fındık yağı biyodizel-bütanol üçlü yakıt karışımları değerlendirilmiştir. Fındık yağı, transesterifikasyon yöntemiyle biyodizele dönüştürülmüş ve çeşitli oranlarda dizel yakıt ve bütanol ile harmanlanmıştır. Fren özgül yakıt tüketimi (FÖYT), fren termal verimliliği (FTV), ve egzoz gazı sıcaklığı (EGS) gibi motor performans parametreleri analiz edilmiştir. NOx emisyonları, duman opaklığı, HC, CO2 ve CO da ölçülmüştür. Yakıt tüketimi, düşük enerji yoğunluğu nedeniyle bütanol içeriğiyle birlikte biraz artmıştır. Bununla birlikte, FTV, oksijenle güçlendirilmiş yanmadan büyük ölçüde etkilenmemiştir. Gizli buharlaşma ısısı ve oksijen içeriği gibi faktörlerden dolayı bütanol içeren karışımlarda egzoz gazı sıcaklığı düşmüştür. Artan oksijen nedeniyle en yüksek bütanol karışımı için CO ve HC emisyonları sırasıyla %32 ve %23'e kadar önemli ölçüde azaltılmıştır. NOx emisyonları da dizele kıyasla, muhtemelen daha düşük yanma sıcaklıklarından dolayı %21'e varan oranlarla azaltılmıştır. Karışımlarda duman opaklığı dizele göre %13 ile %69 arasında azalmıştır. Genel olarak çalışma, dizel-fındık yağı biyodizel-bütanol üçlü karışımlarının, modifiye edilmemiş dizel motorlarda alternatif yakıt olarak potansiyel olarak kullanılabileceğini göstermektedir. Karışımlar, egzoz emisyonlarının çoğunu azaltırken verimlilik açısından dizelle karşılaştırılabilir performans göstermiştir. Ancak uzun vadeli etkileri doğrulamak için farklı çalışma koşulları altında daha fazla test yapılmasına ihtiyaç vardır.
Project Number
1919B012218309 (The Scientific and Technological Research Council of Türkiye (TUBITAK) through the University Students Domestic Research Projects Support Program)
References
- Abrar, I., Arora, T., & Khandelwal, R. (2023). Bioalcohols as an alternative fuel for transportation: Cradle to grave analysis. Fuel Processing Technology, 242, 107646. https://doi.org/10.1016/j.fuproc.2022.107646
- Ağbulut, Ü., Sarıdemir, S., & Karagöz, M. (2020). Experimental investigation of fusel oil (isoamyl alcohol) and diesel blends in a CI engine. Fuel, 267. https://doi.org/10.1016/j.fuel.2020.117042
- Ahmad, S., Jafry, A. T., Haq, M. ul, Asif, M., Ahmad, K., & Zafar, F. U. (2023). Experimental study of castor biodiesel ternary blends with ethanol, butanol, diethyl ether and dibutyl ether in a diesel engine. Journal of Thermal Analysis and Calorimetry, 148(3), 927–941. https://doi.org/10.1007/s10973-022-11786-7
- Alagumalai, A., Jodat, A., Mahian, O., & Ashok, B. (2022). NOx formation chemical kinetics in IC engines. NOx Emission Control Technologies in Stationary and Automotive Internal Combustion Engines: Approaches Toward NOx Free Automobiles, 39–68. https://doi.org/10.1016/B978-0-12-823955-1.00002-4
- Altarazi, Y. S. M., Abu Talib, A. R., Yu, J., Gires, E., Abdul Ghafir, M. F., Lucas, J., & Yusaf, T. (2022). Effects of biofuel on engines performance and emission characteristics: A review. Energy, 238, 121910. https://doi.org/10.1016/J.ENERGY.2021.121910
- Arias, S., Molina, F., Palacio, R., López, D., & Agudelo, J. R. (2022). Assessment of carbonyl and PAH emissions in an automotive diesel engine fueled with butanol and renewable diesel fuel blends. Fuel, 316. https://doi.org/10.1016/j.fuel.2022.123290
- Asokan, M. A., & Prabu, S. S. (2023). Effect of n-butanol on cotton seed oil biodiesel: an approach for improving the emission behavior of DI diesel engine. Petroleum Science and Technology, 41(11), 1162–1180. https://doi.org/10.1080/10916466.2022.2092131
- Baek, S., Lee, H., & Lee, K. (2021). Fuel efficiency and exhaust characteristics of turbocharged diesel engine equipped with an electric supercharger. Energy, 214. https://doi.org/10.1016/j.energy.2020.119049
- Bhanu Teja, N., Devarajan, Y., Mishra, R., Sivasaravanan, S., & Thanikaivel Murugan, D. (2023). Detailed analysis on sterculia foetida kernel oil as renewable fuel in compression ignition engine. Biomass Conversion and Biorefinery, 13(4), 2959–2970. https://doi.org/10.1007/S13399-021-01328-W/FIGURES/12
- Bonenkamp, T. B., Middelburg, L. M., Hosli, M. O., & Wolffenbuttel, R. F. (2020). From bioethanol containing fuels towards a fuel economy that includes methanol derived from renewable sources and the impact on European Union decision-making on transition pathways. Renewable and Sustainable Energy Reviews, 120, 109667. https://doi.org/10.1016/j.rser.2019.109667
- Celenk, V. U., Argon, Z. U., & Gumus, Z. P. (2020). Cold pressed hazelnut (Corylus avellana) oil. In Cold Pressed Oils: Green Technology, Bioactive Compounds, Functionality, and Applications (pp. 241–254). Elsevier. https://doi.org/10.1016/B978-0-12-818188-1.00020-7
- Deepanraj, B., Senthilkumar, & N., Mala, & D., & Sathiamourthy, & A. (2022). Cashew nut shell liquid as alternate fuel for CI engine-optimization approach for performance improvement. Biomass Conversion and Biorefinery, 12, 1715–1728. https://doi.org/10.1007/s13399-021-01312-4/Published
- Devarajan, Y., Munuswamy, D. B., Teja Nalla, B., Choubey, G., Mishra, R., & Vellaiyan, S. (2022). Experimental analysis of Sterculia foetida biodiesel and butanol blends as a renewable and eco-friendly fuel. Industrial Crops and Products, 178. https://doi.org/10.1016/j.indcrop.2022.114612
- Elgharbawy, A. S., Sadik, W. A., Sadek, O. M., & Kasaby, M. A. (2021). Glycerolysis treatment to enhance biodiesel production from low-quality feedstocks. Fuel, 284. https://doi.org/10.1016/j.fuel.2020.118970
- Fernández-Rodríguez, D., Lapuerta, M., & German, L. (2021). Progress in the use of biobutanol blends in diesel engines. In Energies (Vol. 14, Issue 11). MDPI AG. https://doi.org/10.3390/en14113215
- Gao, J., Chen, H., Dave, K., Chen, J., & Jia, D. (2020). Fuel economy and exhaust emissions of a diesel vehicle under real traffic conditions. Energy Science and Engineering, 8(5), 1781–1792. https://doi.org/10.1002/ese3.632
- Garg, R., Sabouni, R., & Ahmadipour, M. (2023). From waste to fuel: Challenging aspects in sustainable biodiesel production from lignocellulosic biomass feedstocks and role of metal organic framework as innovative heterogeneous catalysts. In Industrial Crops and Products (Vol. 206). Elsevier B.V. https://doi.org/10.1016/j.indcrop.2023.117554
- Gowthama Krishnan, M., Rajkumar, S., Thangaraja, J., & Devarajan, Y. (2023). Exploring the synergistic potential of higher alcohols and biodiesel in blended and dual fuel combustion modes in diesel engines: A comprehensive review. Sustainable Chemistry and Pharmacy, 35, 2352–5541. https://doi.org/10.1016/j.scp.2023.101180
- Hamid, M. F., Idroas, M. Y., Sa’ad, S., Saiful Bahri, A. J., Sharzali, C. M., Abdullah, M. K., & Zainal, Z. A. (2018). Numerical investigation of in-cylinder air flow characteristic improvement for Emulsified biofuel (EB) application. Renewable Energy, 127, 84–93. https://doi.org/10.1016/j.renene.2018.04.006
- Hassan, T., Rahman, M. M., Rahman, M. A., & Nabi, M. N. (2022). Opportunities and challenges for the application of biodiesel as automotive fuel in the 21st century. Biofuels, Bioproducts and Biorefining, 16(5), 1353–1387. https://doi.org/10.1002/BBB.2375
- Hicks, D. (2022). Biological Flora of Britain and Ireland: Corylus avellana: No. 302. Journal of Ecology, 110(12), 3053–3089. https://doi.org/10.1111/1365-2745.14008
- Holman, J. P. (2021). Experimental Methods for Engineers Eighth Edition (Eighth). McGraw-Hill series. www.mhhe.com/holman
- İslam, A., Ayan, S., Turan, A., Yılmaz, M., Karagol, S., & Çolak, S. (2023). Morphometric Diversity for Rootstock Characteristics of Turkish Hazel (Corylus colurna L.) Populations in The Western Black Sea Region of Türkiye. The Black Sea Journal of Sciences, 13(4), 1416–1426. https://doi.org/10.31466/kfbd.1285059
- Jariah, N. F., Hassan, M. A., Hin Taufiq-Yap, Y., Roslan, A. M., García, T., Francisco, J., Martín, G., & Álvarez-Mateos, P. (2021). Technological Advancement for Efficiency Enhancement of Biodiesel and Residual Glycerol Refining: A Mini Review. Processes 2021, Vol. 9, Page 1198, 9(7), 1198. https://doi.org/10.3390/PR9071198
- Kadir Yesilyurt, M., Eryilmaz, T., & Arslan, M. (2018). A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/n-pentanol (C5 alcohol) fuel blends. Energy, 165, 1332–1351. https://doi.org/10.1016/j.energy.2018.10.100
- Karpanai Selvan, B., Das, S., Chandrasekar, M., Girija, R., John Vennison, S., Jaya, N., Saravanan, P., Rajasimman, M., Vasseghian, Y., & Rajamohan, N. (2022). Utilization of biodiesel blended fuel in a diesel engine – Combustion engine performance and emission characteristics study. Fuel, 311. https://doi.org/10.1016/j.fuel.2021.122621
- Kattimani, S. S., Topannavar, S. N., Shivashimpi, M. M., & Dodamani, B. M. (2020). Experimental investigation to optimize fuel injection strategies and compression ratio on single cylinder DI diesel engine operated with FOME biodiesel. Energy. https://doi.org/10.1016/j.energy.2020.117336
- Kumar Mahla, S., Goga, G., Cho, H. M., Dhir, A., Bhupendra, &, & Chauhan, S. (2020). Separate effect of biodiesel, n-butanol, and biogas on performance and emission characteristics of diesel engine: a review. Biomass Conversion and Biorefinery, 13, 447–469. https://doi.org/10.1007/s13399-020-01056-7/Published
- Kumar, S., Dinesha, P., & Rosen, M. A. (2019). Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive. Energy, 185, 1163–1173. https://doi.org/10.1016/J.ENERGY.2019.07.124
- Liu, H., Wang, X., Zheng, Z., Gu, J., Wang, H., & Yao, M. (2014). Experimental and simulation investigation of the combustion characteristics and emissions using n-butanol/biodiesel dual-fuel injection on a diesel engine. Energy, 74, 741–752. https://doi.org/10.1016/j.energy.2014.07.041
- Mahmood, L., Zangana, K., Hameed Yaseen, A., Hassan, H., Mohammed, M. M., Mohammed, M. F., & Alalwan, H. A. (2023). Investigated kerosene-diesel fuel performance in internal combustion engine. Cleaner Engineering and Technology, 12, 100591. https://doi.org/10.1016/j.clet.2022.100591
- Mathew, G. M., Raina, D., Narisetty, V., Kumar, V., Saran, S., Pugazhendi, A., Sindhu, R., Pandey, A., & Binod, P. (2021). Recent advances in biodiesel production: Challenges and solutions. Science of the Total Environment, 794, 148751. https://doi.org/10.1016/j.scitotenv.2021.148751
- Mohammad, A. S., Balla, H. H., & Al-Zuhairy, M. S. (2023). Emission and Performance in a Diesel Engine Operating on Diesel-Biodiesel-Butanol Blends Derived from Waste Cooking Oil. International Journal of Energy Production and Management, 8(4), 241–249. https://doi.org/10.18280/ijepm.080406
- Mourad, M., Mahmoud, K. R. M., & Noureldeen, E.-S. H. (2021). Improving diesel engine performance and emissions characteristics fuelled with biodiesel. Fuel, 302, 121097. https://doi.org/10.1016/j.fuel.2021.121097
- Nayab, R., Imran, M., Ramzan, M., Tariq, M., Taj, M. B., Akhtar, M. N., & Iqbal, H. M. N. (2022). Sustainable biodiesel production via catalytic and non-catalytic transesterification of feedstock materials – A review. Fuel, 328, 125254. https://doi.org/10.1016/J.FUEL.2022.125254
- Örs, İ., Sarıkoç, S., Atabani, A. E., & Ünalan, S. (2020). Experimental investigation of effects on performance, emissions and combustion parameters of biodiesel–diesel–butanol blends in a direct-injection CI engine. Biofuels, 11(2), 121–134. https://doi.org/10.1080/17597269.2019.1608682
- Paradinas, A., Ramade, L., Mulot-Greffeuille, C., Hamidi, R., Thomas, M., & Toillon, J. (2022). Phenological growth stages of ‘Barcelona’ hazelnut (Corylus avellana L.) described using an extended BBCH scale. Scientia Horticulturae, 296, 110902. https://doi.org/10.1016/J.SCIENTA.2022.110902
- Raza Abbasi, K., Shahbaz, M., Zhang, J., Irfan, M., & Alvarado, R. (2022). Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy. Renewable Energy, 187, 390–402. https://doi.org/10.1016/j.renene.2022.01.066
- Sahu, T. K., & Shukla, P. C. (2022). Combustion and Emission Characteristics of Butanol-Diesel Blend (B15) Doped with Diethyl Ether, Diglyme and Ethyl Diglyme in a CRDI Diesel Engine. SAE Technical Papers. https://doi.org/10.4271/2022-01-1073
- Satsangi, D. P., & Tiwari, N. (2018). Experimental investigation on combustion, noise, vibrations, performance and emissions characteristics of diesel/n-butanol blends driven genset engine. Fuel, 221, 44–60. https://doi.org/10.1016/j.fuel.2018.02.060
- Scopus. (2024). Scopus - Document search results | Signed in. https://www.scopus.com/results/results.uri?sort=plf-f&src=s&st1=hazelnut+oil+and+biodiesel&sid=094aec4e4df867b224088187e863e3ec&sot=b&sdt=b&sl=41&s=TITLE-ABS-KEY%28hazelnut+oil+and+biodiesel%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present&sessionSearchId=094aec4e4df867b224088187e863e3ec&limit=10
- Şimşek, S. (2020). Increasing Cetane Number of the Diesel Fuel by Fuel Additives. International Journal of Automotive Science And Technology, 4(4), 300–306. https://doi.org/10.30939/IJASTECH..795984
- Singh, D., Sharma, D., Soni, S. L., Sharma, S., Kumar Sharma, P., & Jhalani, A. (2020). A review on feedstocks, production processes, and yield for different generations of biodiesel. In Fuel (Vol. 262). Elsevier Ltd. https://doi.org/10.1016/j.fuel.2019.116553
- Swamy, D. L. S. V. N., Kowsik, Y., Dhana Raju, V., Appa Rao, K., Venu, H., Subramani, L., & Bala Prasad, K. (2023). Effect of 1-butanol on the characteristics of diesel engine powered with novel tamarind biodiesel for the future sustainable energy source. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 45(3), 6547–6565. https://doi.org/10.1080/15567036.2019.1675810
- Temizyurek-Arslan, M. (2023). Evaluation of hazelnut production in Türkiye in environment, energy and economy using life cycle assessment approach. Science of the Total Environment, 892. https://doi.org/10.1016/j.scitotenv.2023.164468
- Thakkar, K., Kachhwaha, S. S., Kodgire, P., & Srinivasan, S. (2021). Combustion investigation of ternary blend mixture of biodiesel/n-butanol/diesel: CI engine performance and emission control. Renewable and Sustainable Energy Reviews, 137. https://doi.org/10.1016/j.rser.2020.110468
- Thiruselvam, K., Ganesan, S., & Senthil, S. (2023). Efficacy of performance and mitigate pollution of CI engine: Delonix regia biodiesel with n-butanol and exhaust gas recirculation. Environmental Progress & Sustainable Energy, e14315. https://doi.org/10.1002/EP.14315
- Thiyagarajan, S., Sonthalia, A., Geo, V. E., Viswanathan, K., & Balasubramaniyam, D. (2021). Effect of low carbon biofuel on carbon emissions in biodiesel fueled CI engine. Bioenergy Resources and Technologies, 291–326. https://doi.org/10.1016/B978-0-12-822525-7.00006-8
- Tipanluisa, L., Thakkar, K., Fonseca, N., & López, J. M. (2022). Investigation of diesel/n-butanol blends as drop-in fuel for heavy-duty diesel engines: Combustion, performance, and emissions. Energy Conversion and Management, 255. https://doi.org/10.1016/j.enconman.2022.115334
- Truong, T. T., Nguyen, X. P., Pham, V. V., Le, V. V., Le, A. T., & Bui, V. T. (2021). Effect of alcohol additives on diesel engine performance: a review. In Energy Sources, Part A: Recovery, Utilization and Environmental Effects. Taylor and Francis Ltd. https://doi.org/10.1080/15567036.2021.2011490
- Tucki, K., Orynycz, O., Wasiak, A., Świć, A., Mruk, R., & Botwińska, K. (2020). Estimation of Carbon Dioxide Emissions from a Diesel Engine Powered by Lignocellulose Derived Fuel for Better Management of Fuel Production. Energies 2020, Vol. 13, Page 561, 13(3), 561. https://doi.org/10.3390/EN13030561
- Tunji Oloyede, C., Elijah Itabiyi, O., Adewemimo Popoola, O., Olatayo Jekayinfa, S., Adeolu Olaniyan, M., Oyejide Adebayo, A., Ogunkunle, O., Faiz Muaz Ahmad Zamri, M., Md Rizwanul Fattah, I., & Md Rizwanul, I. (2023). Navigating prospects and challenges for green fuels for achieving economical, environmental and ecological resilience: a scientific review. Biofuels, 1–13. https://doi.org/10.1080/17597269.2023.2299090
- Usmani, R. A., Mohammad, A. S., & Ansari, S. S. (2023). Comprehensive biofuel policy analysis framework: A novel approach evaluating the policy influences. Renewable and Sustainable Energy Reviews, 183, 113403. https://doi.org/10.1016/J.RSER.2023.113403
- Venu, H., Raju, V. D., & Subramani, L. (2019). Combined effect of influence of nano additives, combustion chamber geometry and injection timing in a DI diesel engine fuelled with ternary (diesel-biodiesel-ethanol) blends. Energy, 174, 386–406. https://doi.org/10.1016/J.ENERGY.2019.02.163
- Veza, I., Irianto, Tuan Hoang, A., Yusuf, A. A., Herawan, S. G., Soudagar, M. E. M., Samuel, O. D., Said, M. F. M., & Silitonga, A. S. (2023). Effects of Acetone-Butanol-Ethanol (ABE) addition on HCCI-DI engine performance, combustion and emission. Fuel, 333, 126377. https://doi.org/10.1016/J.FUEL.2022.126377
- Viswanathan, K., & Paulraj, A. (2023). A comprehensive study on the performance and emission characteristics of a diesel engine with the blends of diesel, jojoba oil biodiesel, and butylated hydroxyl anisole as an alternative fuel. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 45(2), 3216–3230. https://doi.org/10.1080/15567036.2020.1849451
- Wei, L., Cheung, C. S., & Ning, Z. (2018). Effects of biodiesel-ethanol and biodiesel-butanol blends on the combustion, performance and emissions of a diesel engine. Energy, 155, 957–970. https://doi.org/10.1016/j.energy.2018.05.049
- Xiao, H., Guo, F., Wang, R., Yang, X., Li, S., & Ruan, J. (2020). Combustion performance and emission characteristics of diesel engine fueled with iso-butanol/biodiesel blends. Fuel, 268, 117387. https://doi.org/10.1016/J.FUEL.2020.117387
- Yesilyurt, M. K. (2020). A detailed investigation on the performance, combustion, and exhaust emission characteristics of a diesel engine running on the blend of diesel fuel, biodiesel and 1-heptanol (C7 alcohol) as a next-generation higher alcohol. Fuel, 275, 117893. https://doi.org/10.1016/J.FUEL.2020.117893
- Yesilyurt, M. K., Aydin, M., Yilbasi, Z., & Arslan, M. (2020). Investigation on the structural effects of the addition of alcohols having various chain lengths into the vegetable oil-biodiesel-diesel fuel blends: An attempt for improving the performance, combustion, and exhaust emission characteristics of a compression ignition engine. Fuel, 269, 117455. https://doi.org/10.1016/J.FUEL.2020.117455
- Yesilyurt, M. K., Yilbasi, Z., & Aydin, M. (2020). The performance, emissions, and combustion characteristics of an unmodified diesel engine running on the ternary blends of pentanol/safflower oil biodiesel/diesel fuel. Journal of Thermal Analysis and Calorimetry, 140(6), 2903–2942. https://doi.org/10.1007/s10973-020-09376-6
- Yilbaşi, Z., Yesilyurt, M. K., Yaman, H., & Arslan, M. (2022). The industrial-grade hemp (Cannabis sativa L.) seed oil biodiesel application in a diesel engine: combustion, harmful pollutants, and performance characteristics. Science and Technology for Energy Transition (STET), 77. https://doi.org/10.2516/stet/2022011
- Yilmaz, N., Atmanli, A., & Trujillo, M. (2017). Influence of 1-pentanol additive on the performance of a diesel engine fueled with waste oil methyl ester and diesel fuel. Fuel, 207, 461–469. https://doi.org/10.1016/j.fuel.2017.06.093
- Yilmaz, N., & Davis, S. M. (2016). Polycyclic aromatic hydrocarbon (PAH) formation in a diesel engine fueled with diesel, biodiesel and biodiesel/n-butanol blends. Fuel, 181, 729–740. https://doi.org/10.1016/j.fuel.2016.05.059
- Yilmaz, N., Vigil, F. M., Atmanli, A., & Donaldson, B. (2023). Influence of Fuel Oxygenation on Regulated Pollutants and Unregulated Aromatic Compounds with Biodiesel and n-Pentanol Blends. International Journal of Energy Research, 2023. https://doi.org/10.1155/2023/3040073
- Yoro, K. O., & Daramola, M. O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect. Advances in Carbon Capture: Methods, Technologies and Applications, 3–28. https://doi.org/10.1016/B978-0-12-819657-1.00001-3
- Zhang, Q., Xia, J., Wang, J., He, Z., Zhao, W., Qian, Y., Zheng, L., Liu, R., & Lu, X. (2022). Experimental study on ignition and combustion characteristics of biodiesel-butanol blends at different injection pressures. Renewable and Sustainable Energy Reviews, 160, 112289. https://doi.org/10.1016/J.RSER.2022.112289
- Zhang, Y., Gao, S., Zhang, Z., Li, W., Yuan, T., Tan, D., Duan, L., & Yang, G. (2023). A comprehensive review on combustion, performance and emission aspects of higher alcohols and its additive effect on the diesel engine. Fuel, 335, 127011. https://doi.org/10.1016/J.FUEL.2022.127011
- Zhao, H. C., Wang, S. B., Yu, T. Z., & Sun, P. (2023). Study on combustion and emissions characteristics of acetone-butanol-Ethanol(ABE)/gasoline premixed fuel in CISI engines. Case Studies in Thermal Engineering, 51. https://doi.org/10.1016/j.csite.2023.103591
- Zhao, P., Wang, H., Atmanli, A., Han, J., He, W., & Somers, L. M. T. (2020). Experimental Investigation of Performance and Emissions of Ethanol and n-Butanol Fuel Blends in a Heavy-Duty Diesel Engine. Frontiers in Mechanical Engineering, 6. https://doi.org/10.3389/fmech.2020.00026
Evaluation of Diesel-Hazelnut Oil Biodiesel-Butanol Triple Fuel Blends as a Potential Alternative Fuel in an Unmodified Diesel Engine
Year 2025,
Volume: 17 Issue: 2, 330 - 348, 15.07.2025
Ümit Yüce
,
Melih Can Saydam
,
Batuhan Altundağ
,
Zeki Yılbaşı
,
Hayri Yaman
Abstract
This study evaluated diesel-hazelnut oil biodiesel-butanol triple fuel blends as a potential alternative fuel for diesel engines. Hazelnut oil was converted to biodiesel using transesterification and blended with diesel fuel and butanol at various ratios. Engine performance parameters like brake-specific fuel consumption (BSFC), brake thermal efficiency (BTE) and exhaust gas temperature (EGT) were analyzed. Emissions of NOx, smoke-opacity, HC, CO2, and CO were also measured. Fuel consumption increased slightly with butanol content due to the lower energy density. However, BTE was largely unaffected by oxygen-enhanced combustion. Exhaust gas temperature decreased for blends containing butanol due to factors like latent heat and oxygen content. CO and HC emissions were significantly reduced by up to 32% and 23%, respectively, for the highest butanol blend due to increased oxygen. NOx emissions were also reduced in comparison to diesel, with reductions up to 21%, likely due to lower combustion temperatures. Smoke opacity decreased between 13 and 69% for blends versus diesel. Overall, study demonstrated that these triple-blends can be utilized as an alternative fuel in unmodified diesel engines. The blends performed comparably to diesel efficiency while lowering most exhaust emissions. However, further testing under different operating conditions is needed to validate the long-term impacts.
Project Number
1919B012218309 (The Scientific and Technological Research Council of Türkiye (TUBITAK) through the University Students Domestic Research Projects Support Program)
References
- Abrar, I., Arora, T., & Khandelwal, R. (2023). Bioalcohols as an alternative fuel for transportation: Cradle to grave analysis. Fuel Processing Technology, 242, 107646. https://doi.org/10.1016/j.fuproc.2022.107646
- Ağbulut, Ü., Sarıdemir, S., & Karagöz, M. (2020). Experimental investigation of fusel oil (isoamyl alcohol) and diesel blends in a CI engine. Fuel, 267. https://doi.org/10.1016/j.fuel.2020.117042
- Ahmad, S., Jafry, A. T., Haq, M. ul, Asif, M., Ahmad, K., & Zafar, F. U. (2023). Experimental study of castor biodiesel ternary blends with ethanol, butanol, diethyl ether and dibutyl ether in a diesel engine. Journal of Thermal Analysis and Calorimetry, 148(3), 927–941. https://doi.org/10.1007/s10973-022-11786-7
- Alagumalai, A., Jodat, A., Mahian, O., & Ashok, B. (2022). NOx formation chemical kinetics in IC engines. NOx Emission Control Technologies in Stationary and Automotive Internal Combustion Engines: Approaches Toward NOx Free Automobiles, 39–68. https://doi.org/10.1016/B978-0-12-823955-1.00002-4
- Altarazi, Y. S. M., Abu Talib, A. R., Yu, J., Gires, E., Abdul Ghafir, M. F., Lucas, J., & Yusaf, T. (2022). Effects of biofuel on engines performance and emission characteristics: A review. Energy, 238, 121910. https://doi.org/10.1016/J.ENERGY.2021.121910
- Arias, S., Molina, F., Palacio, R., López, D., & Agudelo, J. R. (2022). Assessment of carbonyl and PAH emissions in an automotive diesel engine fueled with butanol and renewable diesel fuel blends. Fuel, 316. https://doi.org/10.1016/j.fuel.2022.123290
- Asokan, M. A., & Prabu, S. S. (2023). Effect of n-butanol on cotton seed oil biodiesel: an approach for improving the emission behavior of DI diesel engine. Petroleum Science and Technology, 41(11), 1162–1180. https://doi.org/10.1080/10916466.2022.2092131
- Baek, S., Lee, H., & Lee, K. (2021). Fuel efficiency and exhaust characteristics of turbocharged diesel engine equipped with an electric supercharger. Energy, 214. https://doi.org/10.1016/j.energy.2020.119049
- Bhanu Teja, N., Devarajan, Y., Mishra, R., Sivasaravanan, S., & Thanikaivel Murugan, D. (2023). Detailed analysis on sterculia foetida kernel oil as renewable fuel in compression ignition engine. Biomass Conversion and Biorefinery, 13(4), 2959–2970. https://doi.org/10.1007/S13399-021-01328-W/FIGURES/12
- Bonenkamp, T. B., Middelburg, L. M., Hosli, M. O., & Wolffenbuttel, R. F. (2020). From bioethanol containing fuels towards a fuel economy that includes methanol derived from renewable sources and the impact on European Union decision-making on transition pathways. Renewable and Sustainable Energy Reviews, 120, 109667. https://doi.org/10.1016/j.rser.2019.109667
- Celenk, V. U., Argon, Z. U., & Gumus, Z. P. (2020). Cold pressed hazelnut (Corylus avellana) oil. In Cold Pressed Oils: Green Technology, Bioactive Compounds, Functionality, and Applications (pp. 241–254). Elsevier. https://doi.org/10.1016/B978-0-12-818188-1.00020-7
- Deepanraj, B., Senthilkumar, & N., Mala, & D., & Sathiamourthy, & A. (2022). Cashew nut shell liquid as alternate fuel for CI engine-optimization approach for performance improvement. Biomass Conversion and Biorefinery, 12, 1715–1728. https://doi.org/10.1007/s13399-021-01312-4/Published
- Devarajan, Y., Munuswamy, D. B., Teja Nalla, B., Choubey, G., Mishra, R., & Vellaiyan, S. (2022). Experimental analysis of Sterculia foetida biodiesel and butanol blends as a renewable and eco-friendly fuel. Industrial Crops and Products, 178. https://doi.org/10.1016/j.indcrop.2022.114612
- Elgharbawy, A. S., Sadik, W. A., Sadek, O. M., & Kasaby, M. A. (2021). Glycerolysis treatment to enhance biodiesel production from low-quality feedstocks. Fuel, 284. https://doi.org/10.1016/j.fuel.2020.118970
- Fernández-Rodríguez, D., Lapuerta, M., & German, L. (2021). Progress in the use of biobutanol blends in diesel engines. In Energies (Vol. 14, Issue 11). MDPI AG. https://doi.org/10.3390/en14113215
- Gao, J., Chen, H., Dave, K., Chen, J., & Jia, D. (2020). Fuel economy and exhaust emissions of a diesel vehicle under real traffic conditions. Energy Science and Engineering, 8(5), 1781–1792. https://doi.org/10.1002/ese3.632
- Garg, R., Sabouni, R., & Ahmadipour, M. (2023). From waste to fuel: Challenging aspects in sustainable biodiesel production from lignocellulosic biomass feedstocks and role of metal organic framework as innovative heterogeneous catalysts. In Industrial Crops and Products (Vol. 206). Elsevier B.V. https://doi.org/10.1016/j.indcrop.2023.117554
- Gowthama Krishnan, M., Rajkumar, S., Thangaraja, J., & Devarajan, Y. (2023). Exploring the synergistic potential of higher alcohols and biodiesel in blended and dual fuel combustion modes in diesel engines: A comprehensive review. Sustainable Chemistry and Pharmacy, 35, 2352–5541. https://doi.org/10.1016/j.scp.2023.101180
- Hamid, M. F., Idroas, M. Y., Sa’ad, S., Saiful Bahri, A. J., Sharzali, C. M., Abdullah, M. K., & Zainal, Z. A. (2018). Numerical investigation of in-cylinder air flow characteristic improvement for Emulsified biofuel (EB) application. Renewable Energy, 127, 84–93. https://doi.org/10.1016/j.renene.2018.04.006
- Hassan, T., Rahman, M. M., Rahman, M. A., & Nabi, M. N. (2022). Opportunities and challenges for the application of biodiesel as automotive fuel in the 21st century. Biofuels, Bioproducts and Biorefining, 16(5), 1353–1387. https://doi.org/10.1002/BBB.2375
- Hicks, D. (2022). Biological Flora of Britain and Ireland: Corylus avellana: No. 302. Journal of Ecology, 110(12), 3053–3089. https://doi.org/10.1111/1365-2745.14008
- Holman, J. P. (2021). Experimental Methods for Engineers Eighth Edition (Eighth). McGraw-Hill series. www.mhhe.com/holman
- İslam, A., Ayan, S., Turan, A., Yılmaz, M., Karagol, S., & Çolak, S. (2023). Morphometric Diversity for Rootstock Characteristics of Turkish Hazel (Corylus colurna L.) Populations in The Western Black Sea Region of Türkiye. The Black Sea Journal of Sciences, 13(4), 1416–1426. https://doi.org/10.31466/kfbd.1285059
- Jariah, N. F., Hassan, M. A., Hin Taufiq-Yap, Y., Roslan, A. M., García, T., Francisco, J., Martín, G., & Álvarez-Mateos, P. (2021). Technological Advancement for Efficiency Enhancement of Biodiesel and Residual Glycerol Refining: A Mini Review. Processes 2021, Vol. 9, Page 1198, 9(7), 1198. https://doi.org/10.3390/PR9071198
- Kadir Yesilyurt, M., Eryilmaz, T., & Arslan, M. (2018). A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/n-pentanol (C5 alcohol) fuel blends. Energy, 165, 1332–1351. https://doi.org/10.1016/j.energy.2018.10.100
- Karpanai Selvan, B., Das, S., Chandrasekar, M., Girija, R., John Vennison, S., Jaya, N., Saravanan, P., Rajasimman, M., Vasseghian, Y., & Rajamohan, N. (2022). Utilization of biodiesel blended fuel in a diesel engine – Combustion engine performance and emission characteristics study. Fuel, 311. https://doi.org/10.1016/j.fuel.2021.122621
- Kattimani, S. S., Topannavar, S. N., Shivashimpi, M. M., & Dodamani, B. M. (2020). Experimental investigation to optimize fuel injection strategies and compression ratio on single cylinder DI diesel engine operated with FOME biodiesel. Energy. https://doi.org/10.1016/j.energy.2020.117336
- Kumar Mahla, S., Goga, G., Cho, H. M., Dhir, A., Bhupendra, &, & Chauhan, S. (2020). Separate effect of biodiesel, n-butanol, and biogas on performance and emission characteristics of diesel engine: a review. Biomass Conversion and Biorefinery, 13, 447–469. https://doi.org/10.1007/s13399-020-01056-7/Published
- Kumar, S., Dinesha, P., & Rosen, M. A. (2019). Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive. Energy, 185, 1163–1173. https://doi.org/10.1016/J.ENERGY.2019.07.124
- Liu, H., Wang, X., Zheng, Z., Gu, J., Wang, H., & Yao, M. (2014). Experimental and simulation investigation of the combustion characteristics and emissions using n-butanol/biodiesel dual-fuel injection on a diesel engine. Energy, 74, 741–752. https://doi.org/10.1016/j.energy.2014.07.041
- Mahmood, L., Zangana, K., Hameed Yaseen, A., Hassan, H., Mohammed, M. M., Mohammed, M. F., & Alalwan, H. A. (2023). Investigated kerosene-diesel fuel performance in internal combustion engine. Cleaner Engineering and Technology, 12, 100591. https://doi.org/10.1016/j.clet.2022.100591
- Mathew, G. M., Raina, D., Narisetty, V., Kumar, V., Saran, S., Pugazhendi, A., Sindhu, R., Pandey, A., & Binod, P. (2021). Recent advances in biodiesel production: Challenges and solutions. Science of the Total Environment, 794, 148751. https://doi.org/10.1016/j.scitotenv.2021.148751
- Mohammad, A. S., Balla, H. H., & Al-Zuhairy, M. S. (2023). Emission and Performance in a Diesel Engine Operating on Diesel-Biodiesel-Butanol Blends Derived from Waste Cooking Oil. International Journal of Energy Production and Management, 8(4), 241–249. https://doi.org/10.18280/ijepm.080406
- Mourad, M., Mahmoud, K. R. M., & Noureldeen, E.-S. H. (2021). Improving diesel engine performance and emissions characteristics fuelled with biodiesel. Fuel, 302, 121097. https://doi.org/10.1016/j.fuel.2021.121097
- Nayab, R., Imran, M., Ramzan, M., Tariq, M., Taj, M. B., Akhtar, M. N., & Iqbal, H. M. N. (2022). Sustainable biodiesel production via catalytic and non-catalytic transesterification of feedstock materials – A review. Fuel, 328, 125254. https://doi.org/10.1016/J.FUEL.2022.125254
- Örs, İ., Sarıkoç, S., Atabani, A. E., & Ünalan, S. (2020). Experimental investigation of effects on performance, emissions and combustion parameters of biodiesel–diesel–butanol blends in a direct-injection CI engine. Biofuels, 11(2), 121–134. https://doi.org/10.1080/17597269.2019.1608682
- Paradinas, A., Ramade, L., Mulot-Greffeuille, C., Hamidi, R., Thomas, M., & Toillon, J. (2022). Phenological growth stages of ‘Barcelona’ hazelnut (Corylus avellana L.) described using an extended BBCH scale. Scientia Horticulturae, 296, 110902. https://doi.org/10.1016/J.SCIENTA.2022.110902
- Raza Abbasi, K., Shahbaz, M., Zhang, J., Irfan, M., & Alvarado, R. (2022). Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy. Renewable Energy, 187, 390–402. https://doi.org/10.1016/j.renene.2022.01.066
- Sahu, T. K., & Shukla, P. C. (2022). Combustion and Emission Characteristics of Butanol-Diesel Blend (B15) Doped with Diethyl Ether, Diglyme and Ethyl Diglyme in a CRDI Diesel Engine. SAE Technical Papers. https://doi.org/10.4271/2022-01-1073
- Satsangi, D. P., & Tiwari, N. (2018). Experimental investigation on combustion, noise, vibrations, performance and emissions characteristics of diesel/n-butanol blends driven genset engine. Fuel, 221, 44–60. https://doi.org/10.1016/j.fuel.2018.02.060
- Scopus. (2024). Scopus - Document search results | Signed in. https://www.scopus.com/results/results.uri?sort=plf-f&src=s&st1=hazelnut+oil+and+biodiesel&sid=094aec4e4df867b224088187e863e3ec&sot=b&sdt=b&sl=41&s=TITLE-ABS-KEY%28hazelnut+oil+and+biodiesel%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present&sessionSearchId=094aec4e4df867b224088187e863e3ec&limit=10
- Şimşek, S. (2020). Increasing Cetane Number of the Diesel Fuel by Fuel Additives. International Journal of Automotive Science And Technology, 4(4), 300–306. https://doi.org/10.30939/IJASTECH..795984
- Singh, D., Sharma, D., Soni, S. L., Sharma, S., Kumar Sharma, P., & Jhalani, A. (2020). A review on feedstocks, production processes, and yield for different generations of biodiesel. In Fuel (Vol. 262). Elsevier Ltd. https://doi.org/10.1016/j.fuel.2019.116553
- Swamy, D. L. S. V. N., Kowsik, Y., Dhana Raju, V., Appa Rao, K., Venu, H., Subramani, L., & Bala Prasad, K. (2023). Effect of 1-butanol on the characteristics of diesel engine powered with novel tamarind biodiesel for the future sustainable energy source. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 45(3), 6547–6565. https://doi.org/10.1080/15567036.2019.1675810
- Temizyurek-Arslan, M. (2023). Evaluation of hazelnut production in Türkiye in environment, energy and economy using life cycle assessment approach. Science of the Total Environment, 892. https://doi.org/10.1016/j.scitotenv.2023.164468
- Thakkar, K., Kachhwaha, S. S., Kodgire, P., & Srinivasan, S. (2021). Combustion investigation of ternary blend mixture of biodiesel/n-butanol/diesel: CI engine performance and emission control. Renewable and Sustainable Energy Reviews, 137. https://doi.org/10.1016/j.rser.2020.110468
- Thiruselvam, K., Ganesan, S., & Senthil, S. (2023). Efficacy of performance and mitigate pollution of CI engine: Delonix regia biodiesel with n-butanol and exhaust gas recirculation. Environmental Progress & Sustainable Energy, e14315. https://doi.org/10.1002/EP.14315
- Thiyagarajan, S., Sonthalia, A., Geo, V. E., Viswanathan, K., & Balasubramaniyam, D. (2021). Effect of low carbon biofuel on carbon emissions in biodiesel fueled CI engine. Bioenergy Resources and Technologies, 291–326. https://doi.org/10.1016/B978-0-12-822525-7.00006-8
- Tipanluisa, L., Thakkar, K., Fonseca, N., & López, J. M. (2022). Investigation of diesel/n-butanol blends as drop-in fuel for heavy-duty diesel engines: Combustion, performance, and emissions. Energy Conversion and Management, 255. https://doi.org/10.1016/j.enconman.2022.115334
- Truong, T. T., Nguyen, X. P., Pham, V. V., Le, V. V., Le, A. T., & Bui, V. T. (2021). Effect of alcohol additives on diesel engine performance: a review. In Energy Sources, Part A: Recovery, Utilization and Environmental Effects. Taylor and Francis Ltd. https://doi.org/10.1080/15567036.2021.2011490
- Tucki, K., Orynycz, O., Wasiak, A., Świć, A., Mruk, R., & Botwińska, K. (2020). Estimation of Carbon Dioxide Emissions from a Diesel Engine Powered by Lignocellulose Derived Fuel for Better Management of Fuel Production. Energies 2020, Vol. 13, Page 561, 13(3), 561. https://doi.org/10.3390/EN13030561
- Tunji Oloyede, C., Elijah Itabiyi, O., Adewemimo Popoola, O., Olatayo Jekayinfa, S., Adeolu Olaniyan, M., Oyejide Adebayo, A., Ogunkunle, O., Faiz Muaz Ahmad Zamri, M., Md Rizwanul Fattah, I., & Md Rizwanul, I. (2023). Navigating prospects and challenges for green fuels for achieving economical, environmental and ecological resilience: a scientific review. Biofuels, 1–13. https://doi.org/10.1080/17597269.2023.2299090
- Usmani, R. A., Mohammad, A. S., & Ansari, S. S. (2023). Comprehensive biofuel policy analysis framework: A novel approach evaluating the policy influences. Renewable and Sustainable Energy Reviews, 183, 113403. https://doi.org/10.1016/J.RSER.2023.113403
- Venu, H., Raju, V. D., & Subramani, L. (2019). Combined effect of influence of nano additives, combustion chamber geometry and injection timing in a DI diesel engine fuelled with ternary (diesel-biodiesel-ethanol) blends. Energy, 174, 386–406. https://doi.org/10.1016/J.ENERGY.2019.02.163
- Veza, I., Irianto, Tuan Hoang, A., Yusuf, A. A., Herawan, S. G., Soudagar, M. E. M., Samuel, O. D., Said, M. F. M., & Silitonga, A. S. (2023). Effects of Acetone-Butanol-Ethanol (ABE) addition on HCCI-DI engine performance, combustion and emission. Fuel, 333, 126377. https://doi.org/10.1016/J.FUEL.2022.126377
- Viswanathan, K., & Paulraj, A. (2023). A comprehensive study on the performance and emission characteristics of a diesel engine with the blends of diesel, jojoba oil biodiesel, and butylated hydroxyl anisole as an alternative fuel. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 45(2), 3216–3230. https://doi.org/10.1080/15567036.2020.1849451
- Wei, L., Cheung, C. S., & Ning, Z. (2018). Effects of biodiesel-ethanol and biodiesel-butanol blends on the combustion, performance and emissions of a diesel engine. Energy, 155, 957–970. https://doi.org/10.1016/j.energy.2018.05.049
- Xiao, H., Guo, F., Wang, R., Yang, X., Li, S., & Ruan, J. (2020). Combustion performance and emission characteristics of diesel engine fueled with iso-butanol/biodiesel blends. Fuel, 268, 117387. https://doi.org/10.1016/J.FUEL.2020.117387
- Yesilyurt, M. K. (2020). A detailed investigation on the performance, combustion, and exhaust emission characteristics of a diesel engine running on the blend of diesel fuel, biodiesel and 1-heptanol (C7 alcohol) as a next-generation higher alcohol. Fuel, 275, 117893. https://doi.org/10.1016/J.FUEL.2020.117893
- Yesilyurt, M. K., Aydin, M., Yilbasi, Z., & Arslan, M. (2020). Investigation on the structural effects of the addition of alcohols having various chain lengths into the vegetable oil-biodiesel-diesel fuel blends: An attempt for improving the performance, combustion, and exhaust emission characteristics of a compression ignition engine. Fuel, 269, 117455. https://doi.org/10.1016/J.FUEL.2020.117455
- Yesilyurt, M. K., Yilbasi, Z., & Aydin, M. (2020). The performance, emissions, and combustion characteristics of an unmodified diesel engine running on the ternary blends of pentanol/safflower oil biodiesel/diesel fuel. Journal of Thermal Analysis and Calorimetry, 140(6), 2903–2942. https://doi.org/10.1007/s10973-020-09376-6
- Yilbaşi, Z., Yesilyurt, M. K., Yaman, H., & Arslan, M. (2022). The industrial-grade hemp (Cannabis sativa L.) seed oil biodiesel application in a diesel engine: combustion, harmful pollutants, and performance characteristics. Science and Technology for Energy Transition (STET), 77. https://doi.org/10.2516/stet/2022011
- Yilmaz, N., Atmanli, A., & Trujillo, M. (2017). Influence of 1-pentanol additive on the performance of a diesel engine fueled with waste oil methyl ester and diesel fuel. Fuel, 207, 461–469. https://doi.org/10.1016/j.fuel.2017.06.093
- Yilmaz, N., & Davis, S. M. (2016). Polycyclic aromatic hydrocarbon (PAH) formation in a diesel engine fueled with diesel, biodiesel and biodiesel/n-butanol blends. Fuel, 181, 729–740. https://doi.org/10.1016/j.fuel.2016.05.059
- Yilmaz, N., Vigil, F. M., Atmanli, A., & Donaldson, B. (2023). Influence of Fuel Oxygenation on Regulated Pollutants and Unregulated Aromatic Compounds with Biodiesel and n-Pentanol Blends. International Journal of Energy Research, 2023. https://doi.org/10.1155/2023/3040073
- Yoro, K. O., & Daramola, M. O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect. Advances in Carbon Capture: Methods, Technologies and Applications, 3–28. https://doi.org/10.1016/B978-0-12-819657-1.00001-3
- Zhang, Q., Xia, J., Wang, J., He, Z., Zhao, W., Qian, Y., Zheng, L., Liu, R., & Lu, X. (2022). Experimental study on ignition and combustion characteristics of biodiesel-butanol blends at different injection pressures. Renewable and Sustainable Energy Reviews, 160, 112289. https://doi.org/10.1016/J.RSER.2022.112289
- Zhang, Y., Gao, S., Zhang, Z., Li, W., Yuan, T., Tan, D., Duan, L., & Yang, G. (2023). A comprehensive review on combustion, performance and emission aspects of higher alcohols and its additive effect on the diesel engine. Fuel, 335, 127011. https://doi.org/10.1016/J.FUEL.2022.127011
- Zhao, H. C., Wang, S. B., Yu, T. Z., & Sun, P. (2023). Study on combustion and emissions characteristics of acetone-butanol-Ethanol(ABE)/gasoline premixed fuel in CISI engines. Case Studies in Thermal Engineering, 51. https://doi.org/10.1016/j.csite.2023.103591
- Zhao, P., Wang, H., Atmanli, A., Han, J., He, W., & Somers, L. M. T. (2020). Experimental Investigation of Performance and Emissions of Ethanol and n-Butanol Fuel Blends in a Heavy-Duty Diesel Engine. Frontiers in Mechanical Engineering, 6. https://doi.org/10.3389/fmech.2020.00026