Research Article
BibTex RIS Cite

Gaz Sementasyonu ve Nitrasyon İşlemine Tabi Tutulan 1.0411 Çeliğinin Mekanik ve Aşınma Davranışlarının İncelenmesi

Year 2025, Volume: 17 Issue: 2, 416 - 431, 15.07.2025
https://doi.org/10.29137/ijerad.1608652

Abstract

Bu çalışma da 1.0411 çeliğine sementasyon ve nitrasyon işlemleri uygulanarak iç yapı, sertlik ve aşınma davranışları incelenmiştir. Sementasyon işlemi propan gazı, nitrasyon işlemi ise saf NH3 gazı kullanılarak 520 °C’ da gerçekleştirilmiştir. Sementasyon sonrasında numunelere 850 °C sıcaklıkta 25 dakika östenitleştirme, akabinde 60 °C sıcaklıkta su verme işlemleri uygulanmıştır. 140 °C sıcaklıkta 25 dakika menevişleme yapılarak işlem basamakları tamamlanmıştır. Yapılan sertlik öçümleri neticesinde yüzey sertliğinin sementasyon işlemi neticesinde 841±15 HV0.3, nitrasyon neticesinde ise 429±28 HV0.3 ulaştığı tespit edilmiştir. Aşınma yüzeylerine ait SEM görüntüleri alınarak aşınma mekanizmaları belirlenmiştir. Sementasyon işleminin aşınma direncini 2 kat, nitrasyon işleminin ise 2.5 kat artırdığı tespit edilmiştir.

References

  • Arif, A. F. M., Akhtar, S. S., & Yilbas, B. S. (2010). Effect of process variables on gas nitriding of H13 tool steel with controlled nitriding potential. International Journal of Surface Science and Engineering, 4(4), 396–415. https://doi.org/10.1504/IJSSCE.2010.037111.
  • Baranowska, J. (2010). Importance of surface activation for nitrided layer formation on austenitic stainless steel. Surface Engineering, 26(4), 293–298. https://doi.org/10.1179/174329409X12593687690710.
  • Bayça, S. U., & Efe, H. (2022). Effects of boriding process on corrosion rate of 21NiCrMo2 steel. International Journal of Engineering Research and Develeopment, 14(1), 1-9. https:// doi.org/10.29137/umagd.1036043.
  • Birol, Y., & Yuksel, B. (2012). Performance of gas nitrided and AlTiN coated AISI H13 hot work tool steel in aluminium extrusion. Surface and Coatings Technology, 207(1), 461–466. https://doi.org/10.1016/j.surfcoat.2012.06.016.
  • Bölükbaşı, Ö. S., Serindağ, T., Gürol, U., Günen, A., & Çam, G. (2023). Improving oxidation resistance of wire arc additive manufactured Inconel 625 Ni-based superalloy by pack aluminizing. CIRP Journal of Manufacturing Science and Technology, 46, 89-97. https://doi.org/10.1016/j.cirpj.2023.07.011.
  • Cárdenas, E. E. V., Lewis, R., Pérez, A. I. M., Ponce, J. L. B., Pinal, F. J. P., Domínguez, M. O., & Arreola, E. D. R. (2016). Characterization and wear performance of boride phases over tool steel substrates. Advances in Mechanical Engineering, 8, 1–10.
  • Chang, S.-H., Huang, K.-T., & Wang, Y.-H. (2012). Effects of thermal erosion and wear resistance on AISI H13 tool steel by various surface treatments. Materials Transactions, 53(4), 745–751.
  • Collin, R., Gunnarson, S., & Thulin, D. (1972). Mathematical model for predicting carbon concentration profiles of gas-carburized steel. Journal of the Iron and Steel Institute, 210(10), 785–789.
  • Coşar, D. (2014). Investigation of the effect of gas carburizing process on wear and mechanical properties of 8622RH and 20MnCr5 steels. (Master's thesis). Eskisehir Osmangazi University, Eskişehir, Turkey.
  • Da Silva, L. L. G., Ueda, M., & Nakazato, R. Z. (2007). Enhanced corrosion resistance of AISI H13 steel treated by nitrogen plasma immersion ion implantation. Surface and Coatings Technology, 201, 8291–8294. https://doi.org/10.1016/j.surfcoat.2006.11.020.
  • Davis, J. R. (2002). Boriding. In Surface hardening of steels (pp. 213–226). ASM International.
  • Davis, J. R. (2002). Surface hardening of steels: Understanding the basics. ASM International, Materials, 91.
  • Erkan, A., Yılmaz, Ü., Helvacıoğlu, Ş., Günay, H., Aydoğan, R., & Ersoy, Ç. (2020). Improvement of mechanical and metallographic properties of materials by low pressure cementation method. Mühendis ve Makine.
  • Gawroński, Z., Malasiński, A., & Sawicki, J. (2010). Elimination of galvanic copper plating process used in hardening of conventionally carburized gear wheels. International Journal of Automotive Technology, 11, 127–131.
  • Gerasimov, S. A., et al. (2014). Mechanical properties of hot-working steels after activization of cementation process. Journal of Mechanical Engineering and Manufacturing Reliability, 43(4), 322–326.
  • Girisken, I., & Çam, G. (2023). Characterization of microstructure and high-temperature wear behavior of pack-borided Co-based Haynes 25 superalloy. CIRP Journal of Manufacturing Science and Technology, 45, 82-98. https://doi.org/10.1016/j.cirpj.2023.06.012.
  • Girişken, İ., & Çam, G. (2022). Boriding of cobalt-based Haynes 25/L-605 superalloy. Journal of Characterization. https://doi.org/10.29228/JCHAR.66388.
  • Günen, A., Gürol, U., Koçak, M., & Çam, G. (2023). Investigation into the influence of boronizing on the wear behavior of additively manufactured Inconel 625 alloy at elevated temperature. Progress in Additive Manufacturing, 8, 1281-1301. https://doi.org/10.1007/s40964-023-00398-8.
  • Gürol, U., Altınay, Y., Günen, A., Bölükbaşı, Ö. S., Koçak, M., & Çam, G. (2023). Effect of powder-pack aluminizing on microstructure and oxidation resistance of wire arc additively manufactured stainless steels. Surface & Coating Technology, 468, 129742. https://doi.org/10.1016/j.surfcoat.2023.129742.
  • Güven, Ş. Y., Delikanlı, K., & Öncel, E. (2014). Effect of ion nitriding surface hardening treatment applied to AISI 4140 steel on fatigue strength. SDU Technical Sciences Journal, 4, 29-39.
  • Hernandez, M. H. S. M., Staia, M. H., & Puchi-Cabrera, E. S. (2008). Evaluation of microstructure and mechanical properties of nitrided steels. Surface and Coatings Technology, 202, 1935-1943.
  • Hüsem, F. (2023). The effects of boriding at 800°C at different times on Ti6Al4V. International Journal of Engineering Research and Development, 15(2), 881-890. https://doi.org/10.29137/umagd.1306808.
  • Ihom, P. A. (2013). Case hardening of mild steel using cowbone as energiser. African Journal of Engineering Research, 1(4), 97-101.pp. 97-10.
  • Joshi, A. A., Hosmani, S. S., & Dumbre, J. (2015). Tribological performance of boronized, nitrided, and normalized AISI 4140 steel against hydrogenated diamond-like carbon-coated AISI D2 steel. Tribology Transactions, 58(3), 500–510.
  • Jurči, P., & Hudáková, M. (2011). Diffusion boronizing of H11 hot work tool steel. Journal of Materials Engineering and Performance, 20(7), 1180–1187.
  • Karagöz, İ. (2007). Investigation of heat treatment conditions that will increase diffusion and hardness depth in case hardening steels. (Master's thesis). Marmara University, İstanbul, Turkey.
  • Karcan, F. (2005). Study of the life of hot work valve molds (Master's thesis). İstanbul Technical University, İstanbul, Turkey.
  • Krauss, G. (1991). Metals handbook (pp. 363-375). ASM International.
  • Krukovich, M. G., Prusakov, B. A., & Sizov, I. G. (2016). Plasticity of boronized layers. Springer International Publishing.
  • Kulka, M., & Castro, M. (2019). Current trends in boriding. Springer International Publishing. https://doi.org/10.1007/978-3-030-06782-3.
  • Lampman, S. (1995). Introduction to surface hardening of steels. ASM Handbook, Heat Treating, 4, 607-619.
  • O’Brien, J. M. (1995). Plasma (ion) nitriding of steels. ASM Handbook, Heat Treating, 4, 944-954.
  • Özcan, H. (2012). Development of a new heat treatment method to increase the wear resistance of 32CrMoV Steel (Master's thesis, Hacettepe University). Hacettepe University Institute of Science and Technology, Ankara, Turkey.
  • Pekgöz, B., Sarıdemir, S., Uygur, İ., & Aslan, Y. (2013). Effects of cementation process on microstructure and hardness values ​​of different steels. Machine Technologies Electronics Magazine, 10(1), 19-24.
  • Przybyłowicz, K. (2021). Teoria i praktyka borowania stali. Wydawnictwo Politechniki Śląskiej.
  • Rodrigo, L. O. B., Heloise, O. P., Vanessa, S., Israel, J. R. B., Silvia, A. C. A., Fernando, S. de S., Almir, S., Carlos, A. F., & Cristiano, G. (2010). Microstructure and corrosion behaviour of pulsed plasma-nitrided AISI H13 tool steel. Corrosion Science, 52, 3133–3139.
  • Ryzhov, N. M., Fakhurtdinov, R. S., & Smirnov, A. E. (2010). Cyclic strength of steel 16Kh3NVFBM-Sh (VKS-5) after vacuum carburizing. Metal Science and Heat Treatment, 52, 61–66.
  • Schneider, M. J., & Chatterjee, M. S. (2013). Introduction to surface hardening of steels. ASM Handbook, Volume 4A, 259–267. ASM International.
  • Tang, Y., Zhang, G., Mao, H., Ren, J., Huang, Z., Li, X., & Li, Q. (2022). Research on the sensor for detection of carburized case depth based on nonlinear ultrasound. Results in Physics, 42, 105984.
  • Türkmen, İ., Yalamaç, E., & Keddam, M. (2020). Investigation of tribological behaviour and diffusion model of Fe₂B layer formed by pack-boriding on SAE 1020 steel. Surface & Coatings Technology, 380, 125154. https://doi.org/10.1016/j.surfcoat.2019.08.017.
  • Wang, H., Wang, B., Wang, Z., Tian, Y., & Misra, R. D. K. (2019). Optimizing the low-pressure carburizing process of 16Cr3NiWMoVNbE gear steel. Journal of Materials Science and Technology, 35(7), 1218–1227.
  • Yang, M. (2012). Nitriding—Fundamentals, modeling, and process optimization (Doctoral dissertation, Worcester Polytechnic University). Worcester Polytechnic University, USA.
  • Yamanel, B., Bican, O., & Bayça, S. U. (2023). Investigation of internal structure and hardness behavior of AISI 1020 steel subjected to surface hardening process using Baybora-2 boriding powder. International Journal of Engineering Research and Development, 15(1), 164-171. https://doi.org/10.29137/umagd.1174515.
  • Yegen, İ. (2009). Effect of salt bath cementation process on wear resistance of hot rolled and cold drawn SAE 8620 and 16MnCr5 steels (Master's thesis). Gebze Institute of Technology, Gebze, Kocaeli.

Investigation of the Mechanical and Wear Behavior of 1.0411 Steel Subjected to Gas Carburizing and Nitriding Processes

Year 2025, Volume: 17 Issue: 2, 416 - 431, 15.07.2025
https://doi.org/10.29137/ijerad.1608652

Abstract

In this study, the microstructure, hardness, and wear behavior of 1.0411 steel were investigated after undergoing carburizing and nitriding processes. The carburizing process was performed using propane gas, while the nitriding process was carried out using pure NH3 gas at 520 °C. After carburizing, the samples were subjected to austenitizing at 850 °C for 25 minutes, followed by quenching in water at 60 °C. The process steps were completed by tempering at 140 °C for 25 minutes. Hardness measurements revealed that the surface hardness reached 841±15 HV0.3 after carburizing and 429±28 HV0.3 after nitriding. SEM images of the wear surfaces were taken to determine the wear mechanisms. It was found that the carburizing process increased wear resistance by 2 times, while the nitriding process increased it by 2.5 times.

References

  • Arif, A. F. M., Akhtar, S. S., & Yilbas, B. S. (2010). Effect of process variables on gas nitriding of H13 tool steel with controlled nitriding potential. International Journal of Surface Science and Engineering, 4(4), 396–415. https://doi.org/10.1504/IJSSCE.2010.037111.
  • Baranowska, J. (2010). Importance of surface activation for nitrided layer formation on austenitic stainless steel. Surface Engineering, 26(4), 293–298. https://doi.org/10.1179/174329409X12593687690710.
  • Bayça, S. U., & Efe, H. (2022). Effects of boriding process on corrosion rate of 21NiCrMo2 steel. International Journal of Engineering Research and Develeopment, 14(1), 1-9. https:// doi.org/10.29137/umagd.1036043.
  • Birol, Y., & Yuksel, B. (2012). Performance of gas nitrided and AlTiN coated AISI H13 hot work tool steel in aluminium extrusion. Surface and Coatings Technology, 207(1), 461–466. https://doi.org/10.1016/j.surfcoat.2012.06.016.
  • Bölükbaşı, Ö. S., Serindağ, T., Gürol, U., Günen, A., & Çam, G. (2023). Improving oxidation resistance of wire arc additive manufactured Inconel 625 Ni-based superalloy by pack aluminizing. CIRP Journal of Manufacturing Science and Technology, 46, 89-97. https://doi.org/10.1016/j.cirpj.2023.07.011.
  • Cárdenas, E. E. V., Lewis, R., Pérez, A. I. M., Ponce, J. L. B., Pinal, F. J. P., Domínguez, M. O., & Arreola, E. D. R. (2016). Characterization and wear performance of boride phases over tool steel substrates. Advances in Mechanical Engineering, 8, 1–10.
  • Chang, S.-H., Huang, K.-T., & Wang, Y.-H. (2012). Effects of thermal erosion and wear resistance on AISI H13 tool steel by various surface treatments. Materials Transactions, 53(4), 745–751.
  • Collin, R., Gunnarson, S., & Thulin, D. (1972). Mathematical model for predicting carbon concentration profiles of gas-carburized steel. Journal of the Iron and Steel Institute, 210(10), 785–789.
  • Coşar, D. (2014). Investigation of the effect of gas carburizing process on wear and mechanical properties of 8622RH and 20MnCr5 steels. (Master's thesis). Eskisehir Osmangazi University, Eskişehir, Turkey.
  • Da Silva, L. L. G., Ueda, M., & Nakazato, R. Z. (2007). Enhanced corrosion resistance of AISI H13 steel treated by nitrogen plasma immersion ion implantation. Surface and Coatings Technology, 201, 8291–8294. https://doi.org/10.1016/j.surfcoat.2006.11.020.
  • Davis, J. R. (2002). Boriding. In Surface hardening of steels (pp. 213–226). ASM International.
  • Davis, J. R. (2002). Surface hardening of steels: Understanding the basics. ASM International, Materials, 91.
  • Erkan, A., Yılmaz, Ü., Helvacıoğlu, Ş., Günay, H., Aydoğan, R., & Ersoy, Ç. (2020). Improvement of mechanical and metallographic properties of materials by low pressure cementation method. Mühendis ve Makine.
  • Gawroński, Z., Malasiński, A., & Sawicki, J. (2010). Elimination of galvanic copper plating process used in hardening of conventionally carburized gear wheels. International Journal of Automotive Technology, 11, 127–131.
  • Gerasimov, S. A., et al. (2014). Mechanical properties of hot-working steels after activization of cementation process. Journal of Mechanical Engineering and Manufacturing Reliability, 43(4), 322–326.
  • Girisken, I., & Çam, G. (2023). Characterization of microstructure and high-temperature wear behavior of pack-borided Co-based Haynes 25 superalloy. CIRP Journal of Manufacturing Science and Technology, 45, 82-98. https://doi.org/10.1016/j.cirpj.2023.06.012.
  • Girişken, İ., & Çam, G. (2022). Boriding of cobalt-based Haynes 25/L-605 superalloy. Journal of Characterization. https://doi.org/10.29228/JCHAR.66388.
  • Günen, A., Gürol, U., Koçak, M., & Çam, G. (2023). Investigation into the influence of boronizing on the wear behavior of additively manufactured Inconel 625 alloy at elevated temperature. Progress in Additive Manufacturing, 8, 1281-1301. https://doi.org/10.1007/s40964-023-00398-8.
  • Gürol, U., Altınay, Y., Günen, A., Bölükbaşı, Ö. S., Koçak, M., & Çam, G. (2023). Effect of powder-pack aluminizing on microstructure and oxidation resistance of wire arc additively manufactured stainless steels. Surface & Coating Technology, 468, 129742. https://doi.org/10.1016/j.surfcoat.2023.129742.
  • Güven, Ş. Y., Delikanlı, K., & Öncel, E. (2014). Effect of ion nitriding surface hardening treatment applied to AISI 4140 steel on fatigue strength. SDU Technical Sciences Journal, 4, 29-39.
  • Hernandez, M. H. S. M., Staia, M. H., & Puchi-Cabrera, E. S. (2008). Evaluation of microstructure and mechanical properties of nitrided steels. Surface and Coatings Technology, 202, 1935-1943.
  • Hüsem, F. (2023). The effects of boriding at 800°C at different times on Ti6Al4V. International Journal of Engineering Research and Development, 15(2), 881-890. https://doi.org/10.29137/umagd.1306808.
  • Ihom, P. A. (2013). Case hardening of mild steel using cowbone as energiser. African Journal of Engineering Research, 1(4), 97-101.pp. 97-10.
  • Joshi, A. A., Hosmani, S. S., & Dumbre, J. (2015). Tribological performance of boronized, nitrided, and normalized AISI 4140 steel against hydrogenated diamond-like carbon-coated AISI D2 steel. Tribology Transactions, 58(3), 500–510.
  • Jurči, P., & Hudáková, M. (2011). Diffusion boronizing of H11 hot work tool steel. Journal of Materials Engineering and Performance, 20(7), 1180–1187.
  • Karagöz, İ. (2007). Investigation of heat treatment conditions that will increase diffusion and hardness depth in case hardening steels. (Master's thesis). Marmara University, İstanbul, Turkey.
  • Karcan, F. (2005). Study of the life of hot work valve molds (Master's thesis). İstanbul Technical University, İstanbul, Turkey.
  • Krauss, G. (1991). Metals handbook (pp. 363-375). ASM International.
  • Krukovich, M. G., Prusakov, B. A., & Sizov, I. G. (2016). Plasticity of boronized layers. Springer International Publishing.
  • Kulka, M., & Castro, M. (2019). Current trends in boriding. Springer International Publishing. https://doi.org/10.1007/978-3-030-06782-3.
  • Lampman, S. (1995). Introduction to surface hardening of steels. ASM Handbook, Heat Treating, 4, 607-619.
  • O’Brien, J. M. (1995). Plasma (ion) nitriding of steels. ASM Handbook, Heat Treating, 4, 944-954.
  • Özcan, H. (2012). Development of a new heat treatment method to increase the wear resistance of 32CrMoV Steel (Master's thesis, Hacettepe University). Hacettepe University Institute of Science and Technology, Ankara, Turkey.
  • Pekgöz, B., Sarıdemir, S., Uygur, İ., & Aslan, Y. (2013). Effects of cementation process on microstructure and hardness values ​​of different steels. Machine Technologies Electronics Magazine, 10(1), 19-24.
  • Przybyłowicz, K. (2021). Teoria i praktyka borowania stali. Wydawnictwo Politechniki Śląskiej.
  • Rodrigo, L. O. B., Heloise, O. P., Vanessa, S., Israel, J. R. B., Silvia, A. C. A., Fernando, S. de S., Almir, S., Carlos, A. F., & Cristiano, G. (2010). Microstructure and corrosion behaviour of pulsed plasma-nitrided AISI H13 tool steel. Corrosion Science, 52, 3133–3139.
  • Ryzhov, N. M., Fakhurtdinov, R. S., & Smirnov, A. E. (2010). Cyclic strength of steel 16Kh3NVFBM-Sh (VKS-5) after vacuum carburizing. Metal Science and Heat Treatment, 52, 61–66.
  • Schneider, M. J., & Chatterjee, M. S. (2013). Introduction to surface hardening of steels. ASM Handbook, Volume 4A, 259–267. ASM International.
  • Tang, Y., Zhang, G., Mao, H., Ren, J., Huang, Z., Li, X., & Li, Q. (2022). Research on the sensor for detection of carburized case depth based on nonlinear ultrasound. Results in Physics, 42, 105984.
  • Türkmen, İ., Yalamaç, E., & Keddam, M. (2020). Investigation of tribological behaviour and diffusion model of Fe₂B layer formed by pack-boriding on SAE 1020 steel. Surface & Coatings Technology, 380, 125154. https://doi.org/10.1016/j.surfcoat.2019.08.017.
  • Wang, H., Wang, B., Wang, Z., Tian, Y., & Misra, R. D. K. (2019). Optimizing the low-pressure carburizing process of 16Cr3NiWMoVNbE gear steel. Journal of Materials Science and Technology, 35(7), 1218–1227.
  • Yang, M. (2012). Nitriding—Fundamentals, modeling, and process optimization (Doctoral dissertation, Worcester Polytechnic University). Worcester Polytechnic University, USA.
  • Yamanel, B., Bican, O., & Bayça, S. U. (2023). Investigation of internal structure and hardness behavior of AISI 1020 steel subjected to surface hardening process using Baybora-2 boriding powder. International Journal of Engineering Research and Development, 15(1), 164-171. https://doi.org/10.29137/umagd.1174515.
  • Yegen, İ. (2009). Effect of salt bath cementation process on wear resistance of hot rolled and cold drawn SAE 8620 and 16MnCr5 steels (Master's thesis). Gebze Institute of Technology, Gebze, Kocaeli.
There are 44 citations in total.

Details

Primary Language English
Subjects Tribology
Journal Section Articles
Authors

Bünyamin Yamanel 0000-0001-6120-1293

Osman Bican 0000-0003-2246-0780

Early Pub Date July 4, 2025
Publication Date July 15, 2025
Submission Date December 27, 2024
Acceptance Date April 9, 2025
Published in Issue Year 2025 Volume: 17 Issue: 2

Cite

APA Yamanel, B., & Bican, O. (2025). Investigation of the Mechanical and Wear Behavior of 1.0411 Steel Subjected to Gas Carburizing and Nitriding Processes. International Journal of Engineering Research and Development, 17(2), 416-431. https://doi.org/10.29137/ijerad.1608652

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.