Review
BibTex RIS Cite

BAKIR YATAKLARI İLE PETROL VE DOĞALGAZ BİRİKİMLERİ ARASINDAKİ İLİŞKİ

Year 2021, Volume: 3 Issue: 2, 72 - 89, 31.12.2021

Abstract

Sedimanter havzalar, hem metalik maden yatakları hem de fosil enerji kaynakları için değerli depolanma alanları içermektedir. Hem petrol ve doğalgaz kaynak kayalarının hem de ham petrol ve ürünlerinin yüksek miktarda metal içeriğine sahip olduğu bilinmektedir. Öncel çalışmalarda, işletilebilir boyutta yatak oluşturabilmiş metalik maden yataklarının petrol ve doğalgaz birikimleri için sığ ve güvenilir bir belirteç olduğunu belirtmiş ve metalik maden yatakları ile hidrokarbon birikimleri arasındaki oluşum ve tektonik ilişkileri gösteren bir diyagram sunulmuştur. Ayrıca, güncel çalışmalarda, altın, kurşun ve çinko yatakları ile hidrokarbon birikimleri arasındaki ilişki gösterilmiş ve işletilebilir boyuttaki Au ve Pb-Zn yataklarının bulunduğu bölgelerin petrol ve doğalgaz aramak için iyi bir referans olarak kullanılabileceği belirtilmiştir. Bakır yatakları ile hidrokarbon birikimleri arasında yakın bir ilişki olduğu birçok çalışmada tespit edilmiştir. Bu çalışmada, bakır yatakları ile hidrokarbon birikimleri arasındaki ilişkinin literatürdeki çalışmalar esas alınarak incelenmesi amaçlanmıştır.

References

  • [1] Özdemir, A., Palabıyık, Y., A shallow and reliable indicator for deep oil and gas accumulations in the subsurface: Metallic ore deposits. IV. Uluslararası Bilimsel ve Mesleki Çalışmalar Kongresi - Mühendislik Bilimleri (BILMES EN), 07 - 10 Kasım 2019, Ankara, 40-57, 2019.
  • [2] Özdemir, A., Altın yatakları ile hidrokarbon birikimleri arasındaki ilişki. MTA Doğal Kaynaklar ve Ekonomi Bülteni, 31, 41-49, 2021.
  • [3] Özdemir, A., Kurşun ve çinko yataklarının hidrokarbon aramacılığındaki rolü. Caucasian Journal of Science, 7 (1), 56-71, 2020.
  • [4] Kelly, W.C., Nishioka, G.K., Precambrian oil inclusions in late veins and the role of hydrocarbons in copper mineralization at White Pine, Michigan. Geology, 13, 334-337, 1985.
  • [5] Eugster, H.P., Oil shales, evaporites and ore deposits. Geochimica et Cosmochimica Acta, 49, 619-635, 1985.
  • [6] Jowett, E.C., Genesis of Kupferschiefer Cu-Ag deposits by convective flow of Rotliegend brines during Triassic rifting. Economic Geology, 81, 1823-1837, 1986.
  • [7] Sverjensky, D.A., Oil field brines as ore-forming solution. Economical Geology, 17, 23-37, 1984.
  • [8] Sverjensky, D.A., The role of migrating oil field brines in the formation of sediment-hosted Cu-rich deposits. Economic Geology, 82, 1130-1141, 1987.
  • [9] Rasilainen, K., Hydrocarbons in the Säviä volcanic schist zone, central Finland. Bulletin of the Geological Society of Finland, 59 (1-2), 109-115, 1987.
  • [10] Gorzhevskiy, D.I., On the role of organic matter in ore formation. International Geology Review, 29(2), 207-217, 1987.
  • [11] Schmitt, L.J., A Review of the Association of Petroliferous Materials with Uranium and Other Metal Deposits in Sedimentary Rocks in the United States. U.S. Geological Survey Report, No. 1798, 18 p., 1988.
  • [12] Mauk, J.L., Hieshima, G.B., Organic matter and copper mineralization at White Pine, Michigan, U.S.A. Chemical Geology, 99, 189-211, 1992.
  • [13] Sawlowicz, Z., Organic matter and its significance for the genesis of the copper-bearing shales (Kupferschiefer) from the Fore-Sudetic monocline (Poland). In: J. Parnell et al. (eds). Bitumens in are Deposits, Springer-Verlag, Berlin, 431-446, 1993.
  • [14] Sawlowicz, Z., Significance of metalloporphyrins for the metal accumulation in the copper-bearing shales from the Zechstein copper deposits, Poland. Mineralogia Poland, 16(2), 35-42, 1985.
  • [15] Manning, D.A.C., Gize, A.P., The role of organic matter in ore transport processes. In Organic Geochemistry: Principles and Applications, M.H. Engel and S.A. Macko (eds), 547-563, 1993.
  • [16] Zentilli, M., Munizaga, F., Graves, M.C., Boric, R., Wilson, N.S.F., Mukhopadhyay, P.K., Lloyd, R., Snowdon, L.R., Hydrocarbon involvement in the genesis of ore deposits: An example in Cretaceous stratabound (manto-type) copper deposits of Central Chile. International Geology Review, 39(1), 1-21, 1997.
  • [17] Sun, Y.Z., Püttmann, W., The role of organic matter during copper enrichment in Kupferschiefer from the Sangerhausen basin, Germany. Organic Geochemistry, 31, 1143-1161, 2000.
  • [18] Rasmussen, B. and Krapez, B., Evidence of hydrocarbon and metalliferous fluid migration in the Palaeoproterozoic Earaheedy Basin of Western Australia. Journal of the Geological Society, 157(2), 355-366, 2000.
  • [19] Sawlowicz, Z., Gize, A.P., Rospondek, M., Organic matter from Zechstein copper deposits (Kupferschiefer) in Poland. in: M. Glikson and M. Mastalerz (eds.) Organic Matter and Mineralisation: Thermal Alteration, Hydrocarbon Generation and Role in Metallogenesis, 220-242, 2000.
  • [20] Wilson, N.S.F., Zentilli, M., Spiro, B., A sulfur, carbon, oxygen, and strontium isotope study of the volcanic-hosted El Soldado manto-type Cu deposit, Chile: The essential role of bacteria and petroleum. Economic Geology, 98, 163-174, 2003.
  • [21] Wilson, N.S.F., Zentilli, M., Association of pyrobitumen with copper mineralization from the Uchumi and Talcuna districts, central Chile. International Journal of Coal Geology, 65, 158-169, 2006.
  • [22] Glasby, G.P., Yamanaka, T., Yamamoto, J., Sato, H., and Notsu, K., Kuroko and hydrocarbon deposits from Northern Honshu, Japan: A possible common hydrothermal/magmatic origin?. Resource Geology, 54(4), 413-424, 2004.
  • [23] Selley, D., Broughton, D., Scott, R., Hitzman, M., Bull, S., Large, R., McGoldrick, P., Croaker, M., Pollington, N., Barra, F., A new look at the geology of the Zambian Copperbelt. In: Hedequist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P. (eds), Economic Geology One Hundredth Anniversary Volume 1905-2005. Society of Economic Geologists, 845-890, 2005.
  • [24] Hanley, J.J., Mungall, J.E., Pettke, T., Spooner, E.T.C. and Bray, C.J., Ore metal redistribution by hydrocarbon-brine and hydrocarbon-halide melt phases, North Range footwall of the Sudbury Igneous Complex, Ontario, Canada. 40, 237-256, 2005.
  • [25] Cisternas, M.E., Hermosilla, J., The role of bitumen in strata-bound copper deposit formation in the Copiapo area, Northern Chile. Miner Deposita, 41, 339-355, 2006.
  • [26] Scott, R.J., David, S., Stuart, B., David, B., Murray, H., David, C., Ross, L., Peter, M., A hydrocarbon replacement model for the Zambian Copperbelt deposits, ASEG Extended Abstracts, 1, 1-7, DOI: 10.1071/ ASEG2006ab160, 2006.
  • [27] Pons, H.A., Muchez, Ph., Dewaele, S., Boutwood, A., Tyler, R., The Stratiform copper mineralization of the Lufukwe Anticline, Lufilian Foreland, Democratic Republic Congo. Geologica Belgica, 10(3-4), 148-151, 2007.
  • [28] Rieger, A., Schwark, L., Cisternas, M.E., Miller, A.H., Genesis and evolution of bitumen in Lower Cretaceous lavas and implications for strata-bound copper deposits, North Chile. Economic Geology, 103, 387-404, 2008.
  • [29] Wang, F.D., Zhu, X.D., Wang, Z.G., Madouzi-type (nodular) sedimentary copper deposit associated with the Emeishan basalt. Sci. China Earth. Sci., 54, 1880-1891, 2011.
  • [30] Taylor, C.D., Causey, J.D., Denning, P.D., Hammarstrom, J.M., Hayes, T.S., Horton, J.D., Kirschbaum, M.J., Parks, H.L., Wilson, A.B., Wintzer, N.E., Zientek, M.L., Descriptive models, grade-tonnage relations, and databases for the assessment of sediment-hosted copper deposits-With emphasis on deposits in the Central African Copperbelt. Democratic Republic of the Congo and Zambia. U.S. Geological Survey Scientific Investigations, Report 2010-5090-J, 154 p., 2013.
  • [31] Box, S.E., Syusyura, Boris, Seltmann, Reimar, Creaser, R.A., Dolgopolova, Alla, Zientek, M.L., Dzhezkazgan and associated sandstone copper deposits of the Chu-Sarysu Basin, central Kazakhstan. in Hedenquist, J.W., Harris, Michael, Camus, Francisco, eds., Geology and genesis of major copper deposits and districts of the World-A tribute to Richard H. Sillitoe: Society of Economic Geologists Special Publication 16, 303-328, 2013.
  • [32] Broughton, D.W., Geology and ore deposits of the Central African Copperbelt, Colorado School of Mines, PhD. Thesis, 174 p., 2014.
  • [33] Spieth, V., Schleuter, H.D., Kopp, J., Keith, S., and Swan, M., Permian Zechstein Kupferschiefer Black Shale in Germany – Drilling a Resource for Metals associated with Hydrocarbons. 2nd International Symposium on Energy Challenges & Mechanics, 19-21 August 2014, Aberdeen, Scotland, UK (Özet bildiri), 2014.
  • [34] Oummouch, A., Essaifi, A., Zayane, R., Maddi, O., Zouhair, M., Maacha, L., Geology and metallogenesis of the sediment-hosted Cu-Ag deposit of Tizert (Igherm Inlier, Anti-Atlas Copperbelt, Morocco). Geofluids, Article ID 7508484, 19 p., 2017.
  • [35] Pons, M.J., Franchini, M.B., Rainoldi, A.L., Cesaretti, N.N., Giusiano, A., The roll of hydrocarbons in the copper, zinc and lead mineralization of Mesozoic rocks from Neuquén Basin (Argentina). XX Congreso Geologico Argentino, San Miguel de Tucuman, August 2017 (Tam metin bildiri ve poster), 2017.
  • [36] Rainoldi, A.L., Franchini, M.B., Boyce, A.J., Giusiano, A., Cesaretti, N.N., Pons, J., Ríos, F.J., Stable isotope and fluid inclusion study of sediment-hosted stratiform copper deposits from the Neuquén Basin, Argentina. Mineralium Deposita, 54(3), 415-436, 2019.
  • [37] Rainoldi, A.L., Franchini, M., Beaufort, D., Mozley, P., Giusiano, A., Nora, C., Patrier, P., Impiccini, A., Pons, J., Mineral reactions associated with hydrocarbon paleomigration in the Huincul High, Neuquén Basin, Argentina. GSA Bulletin, 127 (11-12), 1711-1729, 2015.
  • [38] Rainoldi, A.L., Franchini, M., Beaufort, D., Patrier, P., Mozley, P., Giusiano, A., Impiccini, A., Pons, J., Large-scale bleaching of red beds related to upward migration of hydrocarbons: Los Chihuidos High, Neuquen Basin, Argentina, Journal of Sedimentary Research, 84, 373-39, 2014.
  • [39] Oszczepalski, S., Speczik, S., Zieli´nski, K., Chmielewski, A., The Kupferschiefer deposits and prospects in SW Poland: Past, present and future. Minerals, 9, 592, 2019.
  • [40] Whitehead, A., Comparison of Sediment-Hosted Cu Mineralization Lisbon and Moab Fault Systems, Utah. The University of Arizona, MSc. Thesis, 64 p., 2019.
  • [41] Herazo, A., Reich, M., Barra, F., Morata, D., del Real, I., Pagès, A., Assessing the role of bitumen in the formation of stratabound Cu-(Ag) depos‐ its: Insights from the Lorena deposit, Las Luces district, northern Chile. Ore Geology Reviews, https://doi.org/10.1016/j.oregeorev.2020.103639, 2020.
  • [42] Pons, M.J., Franchini, M., Rainoldi, A.L., Giusiano, A., Cesaretti, N.N., Montagna, A.O., and Herrington, R., Base metal mobility linked to brine and hydrocarbon migration at the Huincul High in the Neuquen Basin, Argentina: Implications for the formation of sediment-hosted base metal deposits. Journal of Geochemical Exploration, 226, 106778, 2021.
  • [43] Warren, J.K., Evaporites, brines and base metals: low-temperature ore emplacement controlled by evaporite diagenesis. Australian Journal of Earth Sciences, 30, 179-208, 2000.
  • [44] Birkeland, A., Ore petrography and fluid evolution in the Cu-(Zn) VMS deposits at Sulitjelma, Northern Norway. The Arctic University of Norway, Department of Geology, MSc. Thesis, 80 p., 2018.
  • [45] Palabıyık, Y., Özdemir, A., Karataş, A., Özyağcı, M., Kastamonu ve Sinop (Orta Karadeniz) Civarının Petrol ve Doğal Gaz Potansiyelinin Suda TPH (Toplam Petrol Hidrokarbonları) Analizi Kullanılarak Belirlenmesi. İstanbul Teknik Üniversitesi, Bilimsel Araştırma Projeleri Koordinasyon Birimi, Proje No: MGA-2020-42587 (Yayımlanmamış), 2021.
  • [46] Cohen, A.S., The rhenium-osmium isotope system: applications to geochronological and paleoenvironmental problems. Journal of the Geological Society 161, 729-734, 2004.
  • [47] Marques, J.C., Overview on the Re-Os isotopic method and its application on ore deposits and organic-rich rocks. Geochimica Brasiliensis, 26(1), 49-66, 2012.
  • [48] Stein, H., Hannah, J., Rhenium-Osmium Geochronology: Sulfides, Shales, Oils, and Mantle. Encyclopedia of Scientific Dating Methods. 1-25, DOI 10.1007/978-94-007-6326-5_36-1, 2014.
  • [49] Özdemir, A., Palabıyık, A. Organik Maddece Zengin Kayaların ve Hidrokarbonların/Petrollerin Yaşlarının Doğrudan, Oluşum, Göç ve Birikme Koşullarının Belirlenmesi için Kullanılan İki Yeni İzotop Sistemi: Re-Os ve İyot-129 İzotopları. Doğru, M.S. (Editör), Bilimin Doğası Üzerine Bir İnceleme, İksad Yayınevi, 85-137, 2020.
  • [50] Jingwen, M., Andao, D., The 982 Ma Re-Os age of copper-nickel sulfide ores in the Baotan area, Guangxi and its geological significance. Science in China (Series D), 45(10), 911-920, 2002.
  • [51] Requia, K., Stein, H., Fontboté, L., Chiaradia, M., Re‐Os and Pb‐Pb geochronology of the Archean Salobo iron oxide copper‐gold deposit, Carajás mineral province, northern Brazil. Mineralium Deposita, 38(6), 727‐738, 2003.
  • [52] Selley, D., Broughton, D., Scott, R., Hitzman, M., Bull, S., Large, R., McGoldrick, P., Croaker, M., Pollington, N., Barra, F., A new look at the geology of the Zambian Copperbelt. In: Hedequist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P. (eds), Economic Geology One Hundredth Anniversary Volume 1905-2005. Society of Economic Geologists, 845-890, 2005.
  • [53] Mathur, R., Titley, S., Ruiz, J., Gibbins, S. and Friehauf, K., A Re-Os isotope study of sedimentary rocks and copper-gold ores from the Ertsberg District, West Papua, Indonesia. Ore Geology Reviews, 26, 207-226, 2005.
  • [54] Zheng, Y., Zhang, G., Xu, R., Gao, S., Pang, Y., Cao, L., Du, A., Shi, Y. Geochronologic constraints on magmatic intrusions and mineralization of the Zhunuo porphyry copper deposit in Gangdese, Tibet. Chin. Sci. Bull., 52(22), 3139-3147, 2007.
  • [55] Gregory, M.J., Wilde, A.R., Schaefer, B.F. and Keays, R.R., Potassic alteration and veining and the age of copper emplacement at Mount Isa, Australia. in Mao, J. and Bierlein, F.P. (Eds.), Mineral Deposit Research: Meeting the Global Challenge, 755-758, 2008.
  • [56] Selby, D., Kelley, K.D., Hitzman, M.W., Zieg, J., Re-Os sulfide (bornite, chalcopyrite, and pyrite) systematics of the carbonate-hosted copper deposits at Ruby Creek, Southern Brooks Range, Alaska. Economic Geology, 104, 437-444, 2009.
  • [57] Box, S.E., Syusyura, Boris, Seltmann, Reimar, Creaser, R.A., Dolgopolova, Alla, Zientek, M.L., Dzhezkazgan and associated sandstone copper deposits of the Chu-Sarysu Basin, central Kazakhstan. in Hedenquist, J.W., Harris, Michael, Camus, Francisco, eds., Geology and genesis of major copper deposits and districts of the World-A tribute to Richard H. Sillitoe: Society of Economic Geologists Special Publication 16, 303-328, 2013.
  • [58] Mirnejad, H., Mathur, R., Hassanzadeh, J., Shafie, B., Noural, S., Linking cu mineralization to host porphyry emplacement: Re-Os ages of molybdenites versus U-Pb ages of zircons and sulfur isotope compositions of pyrite and chalcopyrite from the IJU and sarkuh porphyry deposits in southeast Iran. Economic Geology, 108, 861-870, 2013.
  • [59] Zhang, Y., Xing, S., Song, Q., Wang, Y., Yu, Z., Du, X., Ma, Y., Zhang, Z., Re-Os and U-Pb geochronology of porphyry and skarn types copper deposits in Jilin Province, NE China. Resource Geology, 65(4), 394-404, 2015.
  • [60] Zhang, P., Zhao, Y., Kou, L., Yang, H., Yang, F., Zircon U-Pb and molybdenite Re-Os geochronology of copper-molybdenum deposits in southeast Liaoning Province, China. International Geology Review, 58(12), 1481-1491, 2016.
  • [61] Akbulut, M., Oyman, Tolga, Çiçek, M., Selby, D., Özgenç, I, Tokçaer, M., Petrography, mineral chemistry, fluid inclusion microthermometry and Re-Os geochronology of the Küre volcanogenic massive sulfide deposit (Central Pontides, Northern Turkey). Ore Geology Reviews, do: 10.1016/j.oregeorev.2016.01.002, 2016.
  • [62] Del Rio-Salas, R., Ochoa-Landin, L., Valencia-Moreno, M., Calmus, T., Meza-Figueroa, D., Salgado-Souto, S., Kirk, J., Ruiz, J., Mendivil-Quijada, H., New U-Pb and Re-Os geochronology of Laramide porphyry copper mineralization along the Cananea lineament, northeastern Sonora, Mexico: Contribution to the understanding of the Cananea copper district. Ore Geology Reviews, 81(3), 1125-1136, 2017.
  • [63] Günay, K., Dönmez, C., Oyan, V., Baran, C., Çiftçi, E., Parlak, O., Yıldırım, N., Deng, X., Li, C., Yıldırım, E., Özkümüş, S., Geology, geochemistry and Re-Os geochronology of the Jurassic Zeybek volcanogenic massive sulfide deposit (Central Pontides, Turkey). Ore Geology Reviews, 111, https://doi.org/10.1016/j.oregeorev.2019.102994, 2019.
  • [64] Saintilan, N.J., Selby, D., Creaser, R.A., Dewaele, S., Sulphide Re-Os geochronology links orogenesis, salt and Cu-Co ores in the Central African Copperbelt. Scientific Reports, 8, 14946, 2018.
Year 2021, Volume: 3 Issue: 2, 72 - 89, 31.12.2021

Abstract

References

  • [1] Özdemir, A., Palabıyık, Y., A shallow and reliable indicator for deep oil and gas accumulations in the subsurface: Metallic ore deposits. IV. Uluslararası Bilimsel ve Mesleki Çalışmalar Kongresi - Mühendislik Bilimleri (BILMES EN), 07 - 10 Kasım 2019, Ankara, 40-57, 2019.
  • [2] Özdemir, A., Altın yatakları ile hidrokarbon birikimleri arasındaki ilişki. MTA Doğal Kaynaklar ve Ekonomi Bülteni, 31, 41-49, 2021.
  • [3] Özdemir, A., Kurşun ve çinko yataklarının hidrokarbon aramacılığındaki rolü. Caucasian Journal of Science, 7 (1), 56-71, 2020.
  • [4] Kelly, W.C., Nishioka, G.K., Precambrian oil inclusions in late veins and the role of hydrocarbons in copper mineralization at White Pine, Michigan. Geology, 13, 334-337, 1985.
  • [5] Eugster, H.P., Oil shales, evaporites and ore deposits. Geochimica et Cosmochimica Acta, 49, 619-635, 1985.
  • [6] Jowett, E.C., Genesis of Kupferschiefer Cu-Ag deposits by convective flow of Rotliegend brines during Triassic rifting. Economic Geology, 81, 1823-1837, 1986.
  • [7] Sverjensky, D.A., Oil field brines as ore-forming solution. Economical Geology, 17, 23-37, 1984.
  • [8] Sverjensky, D.A., The role of migrating oil field brines in the formation of sediment-hosted Cu-rich deposits. Economic Geology, 82, 1130-1141, 1987.
  • [9] Rasilainen, K., Hydrocarbons in the Säviä volcanic schist zone, central Finland. Bulletin of the Geological Society of Finland, 59 (1-2), 109-115, 1987.
  • [10] Gorzhevskiy, D.I., On the role of organic matter in ore formation. International Geology Review, 29(2), 207-217, 1987.
  • [11] Schmitt, L.J., A Review of the Association of Petroliferous Materials with Uranium and Other Metal Deposits in Sedimentary Rocks in the United States. U.S. Geological Survey Report, No. 1798, 18 p., 1988.
  • [12] Mauk, J.L., Hieshima, G.B., Organic matter and copper mineralization at White Pine, Michigan, U.S.A. Chemical Geology, 99, 189-211, 1992.
  • [13] Sawlowicz, Z., Organic matter and its significance for the genesis of the copper-bearing shales (Kupferschiefer) from the Fore-Sudetic monocline (Poland). In: J. Parnell et al. (eds). Bitumens in are Deposits, Springer-Verlag, Berlin, 431-446, 1993.
  • [14] Sawlowicz, Z., Significance of metalloporphyrins for the metal accumulation in the copper-bearing shales from the Zechstein copper deposits, Poland. Mineralogia Poland, 16(2), 35-42, 1985.
  • [15] Manning, D.A.C., Gize, A.P., The role of organic matter in ore transport processes. In Organic Geochemistry: Principles and Applications, M.H. Engel and S.A. Macko (eds), 547-563, 1993.
  • [16] Zentilli, M., Munizaga, F., Graves, M.C., Boric, R., Wilson, N.S.F., Mukhopadhyay, P.K., Lloyd, R., Snowdon, L.R., Hydrocarbon involvement in the genesis of ore deposits: An example in Cretaceous stratabound (manto-type) copper deposits of Central Chile. International Geology Review, 39(1), 1-21, 1997.
  • [17] Sun, Y.Z., Püttmann, W., The role of organic matter during copper enrichment in Kupferschiefer from the Sangerhausen basin, Germany. Organic Geochemistry, 31, 1143-1161, 2000.
  • [18] Rasmussen, B. and Krapez, B., Evidence of hydrocarbon and metalliferous fluid migration in the Palaeoproterozoic Earaheedy Basin of Western Australia. Journal of the Geological Society, 157(2), 355-366, 2000.
  • [19] Sawlowicz, Z., Gize, A.P., Rospondek, M., Organic matter from Zechstein copper deposits (Kupferschiefer) in Poland. in: M. Glikson and M. Mastalerz (eds.) Organic Matter and Mineralisation: Thermal Alteration, Hydrocarbon Generation and Role in Metallogenesis, 220-242, 2000.
  • [20] Wilson, N.S.F., Zentilli, M., Spiro, B., A sulfur, carbon, oxygen, and strontium isotope study of the volcanic-hosted El Soldado manto-type Cu deposit, Chile: The essential role of bacteria and petroleum. Economic Geology, 98, 163-174, 2003.
  • [21] Wilson, N.S.F., Zentilli, M., Association of pyrobitumen with copper mineralization from the Uchumi and Talcuna districts, central Chile. International Journal of Coal Geology, 65, 158-169, 2006.
  • [22] Glasby, G.P., Yamanaka, T., Yamamoto, J., Sato, H., and Notsu, K., Kuroko and hydrocarbon deposits from Northern Honshu, Japan: A possible common hydrothermal/magmatic origin?. Resource Geology, 54(4), 413-424, 2004.
  • [23] Selley, D., Broughton, D., Scott, R., Hitzman, M., Bull, S., Large, R., McGoldrick, P., Croaker, M., Pollington, N., Barra, F., A new look at the geology of the Zambian Copperbelt. In: Hedequist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P. (eds), Economic Geology One Hundredth Anniversary Volume 1905-2005. Society of Economic Geologists, 845-890, 2005.
  • [24] Hanley, J.J., Mungall, J.E., Pettke, T., Spooner, E.T.C. and Bray, C.J., Ore metal redistribution by hydrocarbon-brine and hydrocarbon-halide melt phases, North Range footwall of the Sudbury Igneous Complex, Ontario, Canada. 40, 237-256, 2005.
  • [25] Cisternas, M.E., Hermosilla, J., The role of bitumen in strata-bound copper deposit formation in the Copiapo area, Northern Chile. Miner Deposita, 41, 339-355, 2006.
  • [26] Scott, R.J., David, S., Stuart, B., David, B., Murray, H., David, C., Ross, L., Peter, M., A hydrocarbon replacement model for the Zambian Copperbelt deposits, ASEG Extended Abstracts, 1, 1-7, DOI: 10.1071/ ASEG2006ab160, 2006.
  • [27] Pons, H.A., Muchez, Ph., Dewaele, S., Boutwood, A., Tyler, R., The Stratiform copper mineralization of the Lufukwe Anticline, Lufilian Foreland, Democratic Republic Congo. Geologica Belgica, 10(3-4), 148-151, 2007.
  • [28] Rieger, A., Schwark, L., Cisternas, M.E., Miller, A.H., Genesis and evolution of bitumen in Lower Cretaceous lavas and implications for strata-bound copper deposits, North Chile. Economic Geology, 103, 387-404, 2008.
  • [29] Wang, F.D., Zhu, X.D., Wang, Z.G., Madouzi-type (nodular) sedimentary copper deposit associated with the Emeishan basalt. Sci. China Earth. Sci., 54, 1880-1891, 2011.
  • [30] Taylor, C.D., Causey, J.D., Denning, P.D., Hammarstrom, J.M., Hayes, T.S., Horton, J.D., Kirschbaum, M.J., Parks, H.L., Wilson, A.B., Wintzer, N.E., Zientek, M.L., Descriptive models, grade-tonnage relations, and databases for the assessment of sediment-hosted copper deposits-With emphasis on deposits in the Central African Copperbelt. Democratic Republic of the Congo and Zambia. U.S. Geological Survey Scientific Investigations, Report 2010-5090-J, 154 p., 2013.
  • [31] Box, S.E., Syusyura, Boris, Seltmann, Reimar, Creaser, R.A., Dolgopolova, Alla, Zientek, M.L., Dzhezkazgan and associated sandstone copper deposits of the Chu-Sarysu Basin, central Kazakhstan. in Hedenquist, J.W., Harris, Michael, Camus, Francisco, eds., Geology and genesis of major copper deposits and districts of the World-A tribute to Richard H. Sillitoe: Society of Economic Geologists Special Publication 16, 303-328, 2013.
  • [32] Broughton, D.W., Geology and ore deposits of the Central African Copperbelt, Colorado School of Mines, PhD. Thesis, 174 p., 2014.
  • [33] Spieth, V., Schleuter, H.D., Kopp, J., Keith, S., and Swan, M., Permian Zechstein Kupferschiefer Black Shale in Germany – Drilling a Resource for Metals associated with Hydrocarbons. 2nd International Symposium on Energy Challenges & Mechanics, 19-21 August 2014, Aberdeen, Scotland, UK (Özet bildiri), 2014.
  • [34] Oummouch, A., Essaifi, A., Zayane, R., Maddi, O., Zouhair, M., Maacha, L., Geology and metallogenesis of the sediment-hosted Cu-Ag deposit of Tizert (Igherm Inlier, Anti-Atlas Copperbelt, Morocco). Geofluids, Article ID 7508484, 19 p., 2017.
  • [35] Pons, M.J., Franchini, M.B., Rainoldi, A.L., Cesaretti, N.N., Giusiano, A., The roll of hydrocarbons in the copper, zinc and lead mineralization of Mesozoic rocks from Neuquén Basin (Argentina). XX Congreso Geologico Argentino, San Miguel de Tucuman, August 2017 (Tam metin bildiri ve poster), 2017.
  • [36] Rainoldi, A.L., Franchini, M.B., Boyce, A.J., Giusiano, A., Cesaretti, N.N., Pons, J., Ríos, F.J., Stable isotope and fluid inclusion study of sediment-hosted stratiform copper deposits from the Neuquén Basin, Argentina. Mineralium Deposita, 54(3), 415-436, 2019.
  • [37] Rainoldi, A.L., Franchini, M., Beaufort, D., Mozley, P., Giusiano, A., Nora, C., Patrier, P., Impiccini, A., Pons, J., Mineral reactions associated with hydrocarbon paleomigration in the Huincul High, Neuquén Basin, Argentina. GSA Bulletin, 127 (11-12), 1711-1729, 2015.
  • [38] Rainoldi, A.L., Franchini, M., Beaufort, D., Patrier, P., Mozley, P., Giusiano, A., Impiccini, A., Pons, J., Large-scale bleaching of red beds related to upward migration of hydrocarbons: Los Chihuidos High, Neuquen Basin, Argentina, Journal of Sedimentary Research, 84, 373-39, 2014.
  • [39] Oszczepalski, S., Speczik, S., Zieli´nski, K., Chmielewski, A., The Kupferschiefer deposits and prospects in SW Poland: Past, present and future. Minerals, 9, 592, 2019.
  • [40] Whitehead, A., Comparison of Sediment-Hosted Cu Mineralization Lisbon and Moab Fault Systems, Utah. The University of Arizona, MSc. Thesis, 64 p., 2019.
  • [41] Herazo, A., Reich, M., Barra, F., Morata, D., del Real, I., Pagès, A., Assessing the role of bitumen in the formation of stratabound Cu-(Ag) depos‐ its: Insights from the Lorena deposit, Las Luces district, northern Chile. Ore Geology Reviews, https://doi.org/10.1016/j.oregeorev.2020.103639, 2020.
  • [42] Pons, M.J., Franchini, M., Rainoldi, A.L., Giusiano, A., Cesaretti, N.N., Montagna, A.O., and Herrington, R., Base metal mobility linked to brine and hydrocarbon migration at the Huincul High in the Neuquen Basin, Argentina: Implications for the formation of sediment-hosted base metal deposits. Journal of Geochemical Exploration, 226, 106778, 2021.
  • [43] Warren, J.K., Evaporites, brines and base metals: low-temperature ore emplacement controlled by evaporite diagenesis. Australian Journal of Earth Sciences, 30, 179-208, 2000.
  • [44] Birkeland, A., Ore petrography and fluid evolution in the Cu-(Zn) VMS deposits at Sulitjelma, Northern Norway. The Arctic University of Norway, Department of Geology, MSc. Thesis, 80 p., 2018.
  • [45] Palabıyık, Y., Özdemir, A., Karataş, A., Özyağcı, M., Kastamonu ve Sinop (Orta Karadeniz) Civarının Petrol ve Doğal Gaz Potansiyelinin Suda TPH (Toplam Petrol Hidrokarbonları) Analizi Kullanılarak Belirlenmesi. İstanbul Teknik Üniversitesi, Bilimsel Araştırma Projeleri Koordinasyon Birimi, Proje No: MGA-2020-42587 (Yayımlanmamış), 2021.
  • [46] Cohen, A.S., The rhenium-osmium isotope system: applications to geochronological and paleoenvironmental problems. Journal of the Geological Society 161, 729-734, 2004.
  • [47] Marques, J.C., Overview on the Re-Os isotopic method and its application on ore deposits and organic-rich rocks. Geochimica Brasiliensis, 26(1), 49-66, 2012.
  • [48] Stein, H., Hannah, J., Rhenium-Osmium Geochronology: Sulfides, Shales, Oils, and Mantle. Encyclopedia of Scientific Dating Methods. 1-25, DOI 10.1007/978-94-007-6326-5_36-1, 2014.
  • [49] Özdemir, A., Palabıyık, A. Organik Maddece Zengin Kayaların ve Hidrokarbonların/Petrollerin Yaşlarının Doğrudan, Oluşum, Göç ve Birikme Koşullarının Belirlenmesi için Kullanılan İki Yeni İzotop Sistemi: Re-Os ve İyot-129 İzotopları. Doğru, M.S. (Editör), Bilimin Doğası Üzerine Bir İnceleme, İksad Yayınevi, 85-137, 2020.
  • [50] Jingwen, M., Andao, D., The 982 Ma Re-Os age of copper-nickel sulfide ores in the Baotan area, Guangxi and its geological significance. Science in China (Series D), 45(10), 911-920, 2002.
  • [51] Requia, K., Stein, H., Fontboté, L., Chiaradia, M., Re‐Os and Pb‐Pb geochronology of the Archean Salobo iron oxide copper‐gold deposit, Carajás mineral province, northern Brazil. Mineralium Deposita, 38(6), 727‐738, 2003.
  • [52] Selley, D., Broughton, D., Scott, R., Hitzman, M., Bull, S., Large, R., McGoldrick, P., Croaker, M., Pollington, N., Barra, F., A new look at the geology of the Zambian Copperbelt. In: Hedequist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P. (eds), Economic Geology One Hundredth Anniversary Volume 1905-2005. Society of Economic Geologists, 845-890, 2005.
  • [53] Mathur, R., Titley, S., Ruiz, J., Gibbins, S. and Friehauf, K., A Re-Os isotope study of sedimentary rocks and copper-gold ores from the Ertsberg District, West Papua, Indonesia. Ore Geology Reviews, 26, 207-226, 2005.
  • [54] Zheng, Y., Zhang, G., Xu, R., Gao, S., Pang, Y., Cao, L., Du, A., Shi, Y. Geochronologic constraints on magmatic intrusions and mineralization of the Zhunuo porphyry copper deposit in Gangdese, Tibet. Chin. Sci. Bull., 52(22), 3139-3147, 2007.
  • [55] Gregory, M.J., Wilde, A.R., Schaefer, B.F. and Keays, R.R., Potassic alteration and veining and the age of copper emplacement at Mount Isa, Australia. in Mao, J. and Bierlein, F.P. (Eds.), Mineral Deposit Research: Meeting the Global Challenge, 755-758, 2008.
  • [56] Selby, D., Kelley, K.D., Hitzman, M.W., Zieg, J., Re-Os sulfide (bornite, chalcopyrite, and pyrite) systematics of the carbonate-hosted copper deposits at Ruby Creek, Southern Brooks Range, Alaska. Economic Geology, 104, 437-444, 2009.
  • [57] Box, S.E., Syusyura, Boris, Seltmann, Reimar, Creaser, R.A., Dolgopolova, Alla, Zientek, M.L., Dzhezkazgan and associated sandstone copper deposits of the Chu-Sarysu Basin, central Kazakhstan. in Hedenquist, J.W., Harris, Michael, Camus, Francisco, eds., Geology and genesis of major copper deposits and districts of the World-A tribute to Richard H. Sillitoe: Society of Economic Geologists Special Publication 16, 303-328, 2013.
  • [58] Mirnejad, H., Mathur, R., Hassanzadeh, J., Shafie, B., Noural, S., Linking cu mineralization to host porphyry emplacement: Re-Os ages of molybdenites versus U-Pb ages of zircons and sulfur isotope compositions of pyrite and chalcopyrite from the IJU and sarkuh porphyry deposits in southeast Iran. Economic Geology, 108, 861-870, 2013.
  • [59] Zhang, Y., Xing, S., Song, Q., Wang, Y., Yu, Z., Du, X., Ma, Y., Zhang, Z., Re-Os and U-Pb geochronology of porphyry and skarn types copper deposits in Jilin Province, NE China. Resource Geology, 65(4), 394-404, 2015.
  • [60] Zhang, P., Zhao, Y., Kou, L., Yang, H., Yang, F., Zircon U-Pb and molybdenite Re-Os geochronology of copper-molybdenum deposits in southeast Liaoning Province, China. International Geology Review, 58(12), 1481-1491, 2016.
  • [61] Akbulut, M., Oyman, Tolga, Çiçek, M., Selby, D., Özgenç, I, Tokçaer, M., Petrography, mineral chemistry, fluid inclusion microthermometry and Re-Os geochronology of the Küre volcanogenic massive sulfide deposit (Central Pontides, Northern Turkey). Ore Geology Reviews, do: 10.1016/j.oregeorev.2016.01.002, 2016.
  • [62] Del Rio-Salas, R., Ochoa-Landin, L., Valencia-Moreno, M., Calmus, T., Meza-Figueroa, D., Salgado-Souto, S., Kirk, J., Ruiz, J., Mendivil-Quijada, H., New U-Pb and Re-Os geochronology of Laramide porphyry copper mineralization along the Cananea lineament, northeastern Sonora, Mexico: Contribution to the understanding of the Cananea copper district. Ore Geology Reviews, 81(3), 1125-1136, 2017.
  • [63] Günay, K., Dönmez, C., Oyan, V., Baran, C., Çiftçi, E., Parlak, O., Yıldırım, N., Deng, X., Li, C., Yıldırım, E., Özkümüş, S., Geology, geochemistry and Re-Os geochronology of the Jurassic Zeybek volcanogenic massive sulfide deposit (Central Pontides, Turkey). Ore Geology Reviews, 111, https://doi.org/10.1016/j.oregeorev.2019.102994, 2019.
  • [64] Saintilan, N.J., Selby, D., Creaser, R.A., Dewaele, S., Sulphide Re-Os geochronology links orogenesis, salt and Cu-Co ores in the Central African Copperbelt. Scientific Reports, 8, 14946, 2018.
There are 64 citations in total.

Details

Primary Language Turkish
Subjects Geological Sciences and Engineering (Other)
Journal Section Articles
Authors

Adil Özdemir 0000-0002-3975-2846

Publication Date December 31, 2021
Submission Date July 21, 2021
Published in Issue Year 2021 Volume: 3 Issue: 2

Cite

APA Özdemir, A. (2021). BAKIR YATAKLARI İLE PETROL VE DOĞALGAZ BİRİKİMLERİ ARASINDAKİ İLİŞKİ. Uluslararası Batı Karadeniz Mühendislik Ve Fen Bilimleri Dergisi, 3(2), 72-89.
AMA Özdemir A. BAKIR YATAKLARI İLE PETROL VE DOĞALGAZ BİRİKİMLERİ ARASINDAKİ İLİŞKİ. UMÜFED. December 2021;3(2):72-89.
Chicago Özdemir, Adil. “BAKIR YATAKLARI İLE PETROL VE DOĞALGAZ BİRİKİMLERİ ARASINDAKİ İLİŞKİ”. Uluslararası Batı Karadeniz Mühendislik Ve Fen Bilimleri Dergisi 3, no. 2 (December 2021): 72-89.
EndNote Özdemir A (December 1, 2021) BAKIR YATAKLARI İLE PETROL VE DOĞALGAZ BİRİKİMLERİ ARASINDAKİ İLİŞKİ. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi 3 2 72–89.
IEEE A. Özdemir, “BAKIR YATAKLARI İLE PETROL VE DOĞALGAZ BİRİKİMLERİ ARASINDAKİ İLİŞKİ”, UMÜFED, vol. 3, no. 2, pp. 72–89, 2021.
ISNAD Özdemir, Adil. “BAKIR YATAKLARI İLE PETROL VE DOĞALGAZ BİRİKİMLERİ ARASINDAKİ İLİŞKİ”. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi 3/2 (December 2021), 72-89.
JAMA Özdemir A. BAKIR YATAKLARI İLE PETROL VE DOĞALGAZ BİRİKİMLERİ ARASINDAKİ İLİŞKİ. UMÜFED. 2021;3:72–89.
MLA Özdemir, Adil. “BAKIR YATAKLARI İLE PETROL VE DOĞALGAZ BİRİKİMLERİ ARASINDAKİ İLİŞKİ”. Uluslararası Batı Karadeniz Mühendislik Ve Fen Bilimleri Dergisi, vol. 3, no. 2, 2021, pp. 72-89.
Vancouver Özdemir A. BAKIR YATAKLARI İLE PETROL VE DOĞALGAZ BİRİKİMLERİ ARASINDAKİ İLİŞKİ. UMÜFED. 2021;3(2):72-89.