Araştırma Makalesi
BibTex RIS Kaynak Göster

FLOW AND STRUCTURAL ANALYSIS STUDY OF UNMANNED AERIAL VEHICLE PROPELLER

Yıl 2024, Cilt: 6 Sayı: 2, 80 - 92, 31.12.2024
https://doi.org/10.55440/umufed.1424143

Öz

Engine blades used in propeller-driven aircraft play an important role in the aviation industry and have been subjected to detailed analysis to evaluate the performance and durability of these components. These analyzes included flow and structural properties and were performed using Fluent software and documented in a comprehensive report. Flow analysis includes velocity and pressure contours in the propeller, and also reveals the results of streamline and velocity vectors in detail. These data are critical to understanding the aerodynamic performance of the propeller. In the analyzes performed within Fluent, pressure forces were considered as a part of the structural analysis. This contributes to the understanding of the forces and interactions on the propeller. Within the scope of structural analysis, total deformation, stress and strain analyzes on the propeller are discussed in detail. These analyzes are of great importance in determining material durability, overall structural integrity and potential weak points. As a result, these comprehensive analyzes provide a directed approach to engineering solutions to optimize the performance of engine blades used in propeller-driven aircraft, increase their durability and ensure their reliability. This report is an important engineering study that contributes to technological advances in the aviation industry

Kaynakça

  • [1] Oktay, T., & Eraslan, Y. (2020, June). Computational fluid dynamics (Cfd) investigation of a quadrotor UAV propeller. In International Conference on Energy, Environment and Storage of Energy (pp. 1-5).
  • [2] Seeni, A. (2019). Aerodynamic Performance Characterization of Slotted Propeller: Part B Effect of Angle. INCAS Bulletin, 11(4), 155-170.
  • [3] Zhang, B., Song, Z., Zhao, F., & Liu, C. (2022). Overview of propulsion systems for unmanned aerial vehicles. Energies, 15(2), 455. [4]Cummings, D. (1973). Numerical Prediction of Propeller Characteristics. Journal of Ship Research, 17, 12-18. https://doi.org/10.5957/JSR.1973.17.1.12.
  • [5]Wald, Q. R. (2006). The aerodynamics of propellers. Progress in Aerospace Sciences, 42(2), 85-128. Fratello, G., Favier, D., & Maresca, C. (1988).
  • [6]Fratello, G., Favier, D., & Maresca, C. (1991). Experimental and numerical study of the propeller/fixed wing interaction. Journal of AIRCRAFT, 28(6), 365-373.
  • [7]Asnaghi, A., Svennberg, U., & Bensow, R. E. (2018). Numerical and experimental analysis of cavitation inception behaviour for high-skewed low-noise propellers. Applied Ocean Research, 79, 197-214.
  • [8]Wang, L., Luo, W., & Li, M. (2022). Numerical investigation of a propeller operating under different inflow conditions. Physics of Fluids, 34(10).
  • [9]Xu, H. Y., Ye, Z. Y., & Shi, A. M. (2012). Numerical study of propeller slipstream based on unstructured dynamic overset grids. Journal of Aircraft, 49(2), 384-389.
  • [10]Morgado, J., Abdollahzadeh, M., Silvestre, M. A. R., & Páscoa, J. C. (2015). High altitude propeller design and analysis. Aerospace Science and Technology, 45, 398-407.
  • [11]Xiang, S., Liu, Y. Q., Tong, G., Zhao, W. P., Tong, S. X., & Li, Y. D. (2018). An improved propeller design method for the electric aircraft. Aerospace Science and Technology, 78, 488-493.
  • [12]Tang, E., & Chung, S. J. (2022). Rapid extraction of propeller geometry using photogrammetry. International Journal of Micro Air Vehicles, 14, 17568293221132044.
  • [13]Sawale, A., Archana, D., & Seshank, C. (2018, December). Design and analysis of propeller. In IOP Conference Series: Materials Science and Engineering (Vol. 455, No. 1, p. 012018). IOP Publishing.
  • [14]Gur, O., & Rosen, A. (2005). Propeller performance at low advance ratio. Journal of aircraft, 42(2), 435-441.
  • [15]Laitone, E. V. (2000). Fixed-pitch propeller selection for light airplanes. Journal of Aircraft, 37(3), 390-395.
  • [16]De Young, J. (1965). Propeller at high incidence. Journal of Aircraft, 2(3), 241-250.
  • [17]Czyż, Z., Karpiński, P., Skiba, K., & Wendeker, M. (2021). Wind tunnel performance tests of the propellers with different pitch for the electric propulsion system. Sensors, 22(1), 2.
  • [18]Cruzatty, C., Sarmiento, E., Valencia, E., & Cando, E. (2022). Design methodology of a UAV propeller implemented in monitoring activities. Materials Today: Proceedings, 49, 115-121.
  • [19]Rajendran, P., & Jayaprakash, A. (2023). Numerical performance analysis of a twin blade drone rotor propeller. Materials Today: Proceedings, 80, 492-498.
  • [20]Catalano, P., & Amato, M. (2003). An evaluation of RANS turbulence modelling for aerodynamic applications. Aerospace science and Technology, 7(7), 493-509.
  • [21]Kwak, E. K., Lee, N. H., Lee, S. S., & Park, S. I. (2012). Performance evaluation of two-equation turbulence models for 3D wing-body configuration. International Journal of Aeronautical and Space Sciences, 13(3), 307-316.
  • [22]Egorov, Y., & Menter, F. (2008, January). Development and application of SST-SAS turbulence model in the DESIDER project. In Advances in Hybrid RANS-LES Modelling: Papers contributed to the 2007 Symposium of Hybrid RANS-LES Methods, Corfu, Greece, 17-18 June 2007 (pp. 261-270). Berlin, Heidelberg: Springer Berlin Heidelberg.

İNSANSIZ HAVA ARAÇLARI PERVANELERİNİN AKIŞ VE YAPISAL ANALİZ ÇALIŞMASI

Yıl 2024, Cilt: 6 Sayı: 2, 80 - 92, 31.12.2024
https://doi.org/10.55440/umufed.1424143

Öz

Pervaneli uçaklarda kullanılan motor bıçakları, havacılık endüstrisinde önemli bir rol oynamakta olup, bu bileşenlerin performansını ve dayanıklılığını değerlendirmek adına detaylı analizlere tabi tutulmuştur. Bu analizler, akış ve yapısal özellikleri içermekte olup, Fluent yazılımı kullanılarak gerçekleştirilmiş ve kapsamlı bir rapor ile belgelenmiştir. Akış analizi, pervanedeki hız ve basınç kontürlerini içermekte, ayrıca streamline ve hız vektörleri sonuçlarını detaylı bir şekilde ortaya koymaktadır. Bu veriler, pervanenin aerodinamik performansını anlamak adına kritik öneme sahiptir. Fluent içerisinde yapılan analizlerde ise basınç kuvvetleri, yapısal analizin bir parçası olarak ele alınmıştır. Bu, pervane üzerindeki kuvvetlerin ve etkileşimlerin anlaşılmasına katkı sağlamaktadır.Yapısal analiz kapsamında pervane üzerindeki toplam deformasyon, gerilim ve gerinim analizleri detaylı bir şekilde ele alınmıştır. Bu analizler, malzeme dayanıklılığını, genel yapısal bütünlüğü ve potansiyel zayıf noktaları belirleme açısından büyük öneme sahiptir. Sonuç olarak, bu kapsamlı analizler, pervaneli uçaklarda kullanılan motor bıçaklarının performansını optimize etmek, dayanıklılıklarını artırmak ve güvenilirliklerini sağlamak adına mühendislik çözümlerine yönlendirilmiş bir yaklaşım sunmaktadır. Bu rapor, havacılık endüstrisindeki teknolojik gelişmelere katkıda bulunan önemli bir mühendislik çalışmasıdır

Kaynakça

  • [1] Oktay, T., & Eraslan, Y. (2020, June). Computational fluid dynamics (Cfd) investigation of a quadrotor UAV propeller. In International Conference on Energy, Environment and Storage of Energy (pp. 1-5).
  • [2] Seeni, A. (2019). Aerodynamic Performance Characterization of Slotted Propeller: Part B Effect of Angle. INCAS Bulletin, 11(4), 155-170.
  • [3] Zhang, B., Song, Z., Zhao, F., & Liu, C. (2022). Overview of propulsion systems for unmanned aerial vehicles. Energies, 15(2), 455. [4]Cummings, D. (1973). Numerical Prediction of Propeller Characteristics. Journal of Ship Research, 17, 12-18. https://doi.org/10.5957/JSR.1973.17.1.12.
  • [5]Wald, Q. R. (2006). The aerodynamics of propellers. Progress in Aerospace Sciences, 42(2), 85-128. Fratello, G., Favier, D., & Maresca, C. (1988).
  • [6]Fratello, G., Favier, D., & Maresca, C. (1991). Experimental and numerical study of the propeller/fixed wing interaction. Journal of AIRCRAFT, 28(6), 365-373.
  • [7]Asnaghi, A., Svennberg, U., & Bensow, R. E. (2018). Numerical and experimental analysis of cavitation inception behaviour for high-skewed low-noise propellers. Applied Ocean Research, 79, 197-214.
  • [8]Wang, L., Luo, W., & Li, M. (2022). Numerical investigation of a propeller operating under different inflow conditions. Physics of Fluids, 34(10).
  • [9]Xu, H. Y., Ye, Z. Y., & Shi, A. M. (2012). Numerical study of propeller slipstream based on unstructured dynamic overset grids. Journal of Aircraft, 49(2), 384-389.
  • [10]Morgado, J., Abdollahzadeh, M., Silvestre, M. A. R., & Páscoa, J. C. (2015). High altitude propeller design and analysis. Aerospace Science and Technology, 45, 398-407.
  • [11]Xiang, S., Liu, Y. Q., Tong, G., Zhao, W. P., Tong, S. X., & Li, Y. D. (2018). An improved propeller design method for the electric aircraft. Aerospace Science and Technology, 78, 488-493.
  • [12]Tang, E., & Chung, S. J. (2022). Rapid extraction of propeller geometry using photogrammetry. International Journal of Micro Air Vehicles, 14, 17568293221132044.
  • [13]Sawale, A., Archana, D., & Seshank, C. (2018, December). Design and analysis of propeller. In IOP Conference Series: Materials Science and Engineering (Vol. 455, No. 1, p. 012018). IOP Publishing.
  • [14]Gur, O., & Rosen, A. (2005). Propeller performance at low advance ratio. Journal of aircraft, 42(2), 435-441.
  • [15]Laitone, E. V. (2000). Fixed-pitch propeller selection for light airplanes. Journal of Aircraft, 37(3), 390-395.
  • [16]De Young, J. (1965). Propeller at high incidence. Journal of Aircraft, 2(3), 241-250.
  • [17]Czyż, Z., Karpiński, P., Skiba, K., & Wendeker, M. (2021). Wind tunnel performance tests of the propellers with different pitch for the electric propulsion system. Sensors, 22(1), 2.
  • [18]Cruzatty, C., Sarmiento, E., Valencia, E., & Cando, E. (2022). Design methodology of a UAV propeller implemented in monitoring activities. Materials Today: Proceedings, 49, 115-121.
  • [19]Rajendran, P., & Jayaprakash, A. (2023). Numerical performance analysis of a twin blade drone rotor propeller. Materials Today: Proceedings, 80, 492-498.
  • [20]Catalano, P., & Amato, M. (2003). An evaluation of RANS turbulence modelling for aerodynamic applications. Aerospace science and Technology, 7(7), 493-509.
  • [21]Kwak, E. K., Lee, N. H., Lee, S. S., & Park, S. I. (2012). Performance evaluation of two-equation turbulence models for 3D wing-body configuration. International Journal of Aeronautical and Space Sciences, 13(3), 307-316.
  • [22]Egorov, Y., & Menter, F. (2008, January). Development and application of SST-SAS turbulence model in the DESIDER project. In Advances in Hybrid RANS-LES Modelling: Papers contributed to the 2007 Symposium of Hybrid RANS-LES Methods, Corfu, Greece, 17-18 June 2007 (pp. 261-270). Berlin, Heidelberg: Springer Berlin Heidelberg.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Havacılık Malzemeleri, Havacılık Yapıları
Bölüm Makaleler
Yazarlar

Tayip Türk 0009-0004-6758-4749

Metin Uzun 0000-0002-0744-3491

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 23 Ocak 2024
Kabul Tarihi 23 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 2

Kaynak Göster

APA Türk, T., & Uzun, M. (2024). İNSANSIZ HAVA ARAÇLARI PERVANELERİNİN AKIŞ VE YAPISAL ANALİZ ÇALIŞMASI. Uluslararası Batı Karadeniz Mühendislik Ve Fen Bilimleri Dergisi, 6(2), 80-92. https://doi.org/10.55440/umufed.1424143
AMA Türk T, Uzun M. İNSANSIZ HAVA ARAÇLARI PERVANELERİNİN AKIŞ VE YAPISAL ANALİZ ÇALIŞMASI. UMÜFED. Aralık 2024;6(2):80-92. doi:10.55440/umufed.1424143
Chicago Türk, Tayip, ve Metin Uzun. “İNSANSIZ HAVA ARAÇLARI PERVANELERİNİN AKIŞ VE YAPISAL ANALİZ ÇALIŞMASI”. Uluslararası Batı Karadeniz Mühendislik Ve Fen Bilimleri Dergisi 6, sy. 2 (Aralık 2024): 80-92. https://doi.org/10.55440/umufed.1424143.
EndNote Türk T, Uzun M (01 Aralık 2024) İNSANSIZ HAVA ARAÇLARI PERVANELERİNİN AKIŞ VE YAPISAL ANALİZ ÇALIŞMASI. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi 6 2 80–92.
IEEE T. Türk ve M. Uzun, “İNSANSIZ HAVA ARAÇLARI PERVANELERİNİN AKIŞ VE YAPISAL ANALİZ ÇALIŞMASI”, UMÜFED, c. 6, sy. 2, ss. 80–92, 2024, doi: 10.55440/umufed.1424143.
ISNAD Türk, Tayip - Uzun, Metin. “İNSANSIZ HAVA ARAÇLARI PERVANELERİNİN AKIŞ VE YAPISAL ANALİZ ÇALIŞMASI”. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi 6/2 (Aralık 2024), 80-92. https://doi.org/10.55440/umufed.1424143.
JAMA Türk T, Uzun M. İNSANSIZ HAVA ARAÇLARI PERVANELERİNİN AKIŞ VE YAPISAL ANALİZ ÇALIŞMASI. UMÜFED. 2024;6:80–92.
MLA Türk, Tayip ve Metin Uzun. “İNSANSIZ HAVA ARAÇLARI PERVANELERİNİN AKIŞ VE YAPISAL ANALİZ ÇALIŞMASI”. Uluslararası Batı Karadeniz Mühendislik Ve Fen Bilimleri Dergisi, c. 6, sy. 2, 2024, ss. 80-92, doi:10.55440/umufed.1424143.
Vancouver Türk T, Uzun M. İNSANSIZ HAVA ARAÇLARI PERVANELERİNİN AKIŞ VE YAPISAL ANALİZ ÇALIŞMASI. UMÜFED. 2024;6(2):80-92.