Research Article
BibTex RIS Cite

BULUT BİLİŞİM AĞ TOPOLOJİLERİNDE PERFORMANS VE HATA TOLERANSI ANALİZİ

Year 2025, Volume: 9 Issue: 1, 58 - 69, 30.06.2025
https://doi.org/10.62301/usmtd.1703696

Abstract

Günümüzde artan veri trafiği ve ölçeklenebilir sistem gereksinimleri doğrultusunda, bulut bilişim altyapılarında kullanılan ağ topolojilerinin performansı büyük önem taşımaktadır. Bu bağlamda, özellikle veri merkezlerinde tercih edilen Fat Tree, Z-Fat Tree ve RUFT-PL (Reduced Unidirectional Fat Tree with Parallel Links) topolojileri, çok katmanlı yapıları hem ağ içi paket iletim performansı hem de bağlantı arızalarına karşı gösterdikleri dayanıklılık açısından dikkat çekmektedir. Bu çalışmada, söz konusu topolojilerin performansları karşılaştırmalı olarak değerlendirilmiş ve farklı bağlantı arızası senaryoları altında gösterdikleri iletim başarısı, gecikme süreleri ve ağ dayanıklılığı analiz edilmiştir. Elde edilen bulgular, paralel bağlantıların hata toleransını artırdığını, tam bağlantılı yapılarda dengeli performans sağlandığını ve düşük bağlantı yoğunluğunun arıza hassasiyetini yükselttiğini göstermiştir.

References

  • R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility, Future Gener. Comput. Syst. 25 (6) (2009) 599–616.
  • P. Kumari, P. Kaur, A survey of fault tolerance in cloud computing, J. King Saud Univ. Comput. Inf. Sci. 33 (10) (2021) 1159–1176.
  • P.M. Mell, T. Grance, The NIST definition of cloud computing, Recommendations of the National Institute of Standards and Technology (2011).
  • S. Patidar, D. Rane, P. Jain, A survey paper on cloud computing, Proc. 2012 2nd Int. Conf. Adv. Comput. Commun. Technol. (ACCT) (2012) 394–398.
  • B. Varghese, R. Buyya, Next Generation Cloud Computing: New Trends and Research Directions, arXiv preprint arXiv:1707.07452 (2017). Available from: http://arxiv.org/abs/1707.07452.
  • M.K. Gokhroo, M.C. Govil, E.S. Pilli, Detecting and Mitigating Faults in Cloud Computing Environment, Proc. 3rd Int. Conf. Comput. Intell. Commun. Technol. (CICT), IEEE (2017).
  • L.P. Saikia, Y.L. Devi, Fault Tolerance Techniques and Algorithms in Cloud Computing, Int. J. Comput. Sci. Commun. Netw. 4 (1) (2014) 1–8.
  • Z. Amin, N. Sethi, H. Singh, Review on Fault Tolerance Techniques in Cloud Computing, Int. J. Comput. Appl. 116 (18) (2015).
  • M. Nazari Cheraghlou, A. Khadem-Zadeh, M. Haghparast, A survey of fault tolerance architecture in cloud computing, J. Netw. Comput. Appl. 61 (2016) 81–92.
  • Z. Amin, N. Sethi, H. Singh, Review on Fault Tolerance Techniques in Cloud Computing, Int. J. Comput. Appl. 116 (18) (2015).
  • X. Gu, H. Wang, Online anomaly prediction for robust cluster systems, Proc. Int. Conf. Data Eng. (2009) 1000–1011.
  • I. Odun-Ayo, R. Goddy-Worlu, V. Samuel, V. Geteloma, Cloud designs and deployment models: A systematic mapping study, BMC Res. Notes 12 (1) (2019).
  • R. Gohil, H. Patel, Comparative Analysis of Cloud Platform: Amazon Web Service, Microsoft Azure, and Google Cloud Provider: A Review, Proc. 15th Int. Conf. Comput. Commun. Netw. Technol. (ICCCNT) (2024).
  • E.N. Ekwonwune, C.D. Anyiam, O.E. Osuagwu, Modelling Conceptual Framework for Private Cloud Infrastructure Deployment in the ICT Centre of Tertiary Institutions, Commun. Netw. 10 (3) (2018) 117–125.
  • A. Marinos, G. Briscoe, Community Cloud Computing (2009).
  • V. Khadilkar, M. Kantarcioglu, B. Thuraisingham, S. Mehrotra, Secure Data Processing in a Hybrid Cloud, arXiv preprint arXiv:1105.1982 (2011). Available from: http://arxiv.org/abs/1105.1982.
  • S.H.H. Madni, M.S.A. Latiff, Y. Coulibaly, S.M. Abdulhamid, Resource scheduling for infrastructure as a service (IaaS) in cloud computing: Challenges and opportunities, J. Netw. Comput. Appl. 68 (2016) 173–200.
  • O. Krancher, P. Luther, M. Jost, Key Affordances of Platform-as-a-Service, J. Manag. Inf. Syst. 35 (3) (2018) 776–812.
  • P.K. Chouhan, F. Yao, S.Y. Yerima, S. Sezer, Software as a Service: Analyzing Security Issues (2014).
  • M. Howard, Cloud Computing – Everything As A Service, arXiv preprint arXiv:2206.07094 (2022). Available from: http://arxiv.org/abs/2206.07094.
  • B. Wang, Z. Qi, R. Ma, H. Guan, A.V. Vasilakos, A survey on data center networking for cloud computing, Comput. Netw. 91 (2015) 528–547.
  • A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, A. Vahdat, Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s Datacenter Network, Proc. ACM SIGCOMM (2015) 183–197.
  • M. Al-Fares, A. Loukissas, A. Vahdat, A scalable commodity data center network architecture, Comput. Commun. Rev., ACM (2008).
  • X. Li, S. Kumar, RUFT-PL: A Fault-Tolerant Fat-Tree with Parallel Links, Proc. IEEE ICCCN (2013) 1–7.
  • C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, S. Lu, BCube: A high performance, server-centric network architecture for modular data centers, SIGCOMM Comput. Commun. Rev. 39 (4) (2009) 63–74.
  • C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, S. Lu, DCell: A scalable and fault-tolerant network structure for data centers, SIGCOMM Comput. Commun. Rev. 38 (4) (2008) 75–86.
  • A. Singla, C.-Y. Hong, L. Popa, P.B. Godfrey, Jellyfish: Networking Data Centers Randomly (2012).
  • B. Lebiednik, A. Mangal, N. Tiwari, A Survey and Evaluation of Data Center Network Topologies, arXiv preprint arXiv:1605.01701 (2016). Available from: http://arxiv.org/abs/1605.01701.
  • H. Emesowum, A. Paraskelidis, M. Adda, Fault tolerance capability of cloud data center, Proc. ICCP (2017) 495–502. https://doi.org/10.1109/iccp.2017.8117053
  • H. Emesowum, A. Paraskelidis, M. Adda, Management of fault tolerance and traffic congestion in cloud data center, Proc. ICOIACT (2018) 10–15. https://doi.org/10.1109/icoiact.2018.8350692
  • D.F. Bermúdez Garzón, C.G. Requena, M.E. Gómez, P. López, J. Duato, A family of fault-tolerant efficient indirect topologies, IEEE Trans. Parallel Distrib. Syst. 27 (4) (2016) 927–940. https://doi.org/10.1109/TPDS.2015.2430863
  • J. Calle-Cancho, C. Cruz-Carrasco, D. Cortés-Polo, J. Galeano-Brajones, J. Carmona-Murillo, Enhancing Programmability in Next-Generation Networks: An Innovative Simulation Approach, Electron. (Switzerland) 13 (3) (2024).

PERFORMANCE AND FAULT TOLERANCE ANALYSIS IN CLOUD COMPUTING NETWORK TOPOLOGIES

Year 2025, Volume: 9 Issue: 1, 58 - 69, 30.06.2025
https://doi.org/10.62301/usmtd.1703696

Abstract

With the increasing volume of data traffic and the growing need for scalable systems, the performance of network topologies used in cloud computing infrastructures has become critically important. In this context, the Fat Tree, Z-Fat Tree, and RUFT-PL (Reduced Unidirectional Fat Tree with Parallel Links) topologies, which are especially preferred in data centers, stand out with their multilayered structures in terms of both packet transmission performance and resilience against link failures. In this study, the performance of these topologies is evaluated comparatively under various link failure scenarios, focusing on transmission success, latency, and network robustness. The findings reveal that parallel links enhance fault tolerance, fully connected structures offer balanced performance, and reduced connection density increases sensitivity to failures.

References

  • R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility, Future Gener. Comput. Syst. 25 (6) (2009) 599–616.
  • P. Kumari, P. Kaur, A survey of fault tolerance in cloud computing, J. King Saud Univ. Comput. Inf. Sci. 33 (10) (2021) 1159–1176.
  • P.M. Mell, T. Grance, The NIST definition of cloud computing, Recommendations of the National Institute of Standards and Technology (2011).
  • S. Patidar, D. Rane, P. Jain, A survey paper on cloud computing, Proc. 2012 2nd Int. Conf. Adv. Comput. Commun. Technol. (ACCT) (2012) 394–398.
  • B. Varghese, R. Buyya, Next Generation Cloud Computing: New Trends and Research Directions, arXiv preprint arXiv:1707.07452 (2017). Available from: http://arxiv.org/abs/1707.07452.
  • M.K. Gokhroo, M.C. Govil, E.S. Pilli, Detecting and Mitigating Faults in Cloud Computing Environment, Proc. 3rd Int. Conf. Comput. Intell. Commun. Technol. (CICT), IEEE (2017).
  • L.P. Saikia, Y.L. Devi, Fault Tolerance Techniques and Algorithms in Cloud Computing, Int. J. Comput. Sci. Commun. Netw. 4 (1) (2014) 1–8.
  • Z. Amin, N. Sethi, H. Singh, Review on Fault Tolerance Techniques in Cloud Computing, Int. J. Comput. Appl. 116 (18) (2015).
  • M. Nazari Cheraghlou, A. Khadem-Zadeh, M. Haghparast, A survey of fault tolerance architecture in cloud computing, J. Netw. Comput. Appl. 61 (2016) 81–92.
  • Z. Amin, N. Sethi, H. Singh, Review on Fault Tolerance Techniques in Cloud Computing, Int. J. Comput. Appl. 116 (18) (2015).
  • X. Gu, H. Wang, Online anomaly prediction for robust cluster systems, Proc. Int. Conf. Data Eng. (2009) 1000–1011.
  • I. Odun-Ayo, R. Goddy-Worlu, V. Samuel, V. Geteloma, Cloud designs and deployment models: A systematic mapping study, BMC Res. Notes 12 (1) (2019).
  • R. Gohil, H. Patel, Comparative Analysis of Cloud Platform: Amazon Web Service, Microsoft Azure, and Google Cloud Provider: A Review, Proc. 15th Int. Conf. Comput. Commun. Netw. Technol. (ICCCNT) (2024).
  • E.N. Ekwonwune, C.D. Anyiam, O.E. Osuagwu, Modelling Conceptual Framework for Private Cloud Infrastructure Deployment in the ICT Centre of Tertiary Institutions, Commun. Netw. 10 (3) (2018) 117–125.
  • A. Marinos, G. Briscoe, Community Cloud Computing (2009).
  • V. Khadilkar, M. Kantarcioglu, B. Thuraisingham, S. Mehrotra, Secure Data Processing in a Hybrid Cloud, arXiv preprint arXiv:1105.1982 (2011). Available from: http://arxiv.org/abs/1105.1982.
  • S.H.H. Madni, M.S.A. Latiff, Y. Coulibaly, S.M. Abdulhamid, Resource scheduling for infrastructure as a service (IaaS) in cloud computing: Challenges and opportunities, J. Netw. Comput. Appl. 68 (2016) 173–200.
  • O. Krancher, P. Luther, M. Jost, Key Affordances of Platform-as-a-Service, J. Manag. Inf. Syst. 35 (3) (2018) 776–812.
  • P.K. Chouhan, F. Yao, S.Y. Yerima, S. Sezer, Software as a Service: Analyzing Security Issues (2014).
  • M. Howard, Cloud Computing – Everything As A Service, arXiv preprint arXiv:2206.07094 (2022). Available from: http://arxiv.org/abs/2206.07094.
  • B. Wang, Z. Qi, R. Ma, H. Guan, A.V. Vasilakos, A survey on data center networking for cloud computing, Comput. Netw. 91 (2015) 528–547.
  • A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, A. Vahdat, Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s Datacenter Network, Proc. ACM SIGCOMM (2015) 183–197.
  • M. Al-Fares, A. Loukissas, A. Vahdat, A scalable commodity data center network architecture, Comput. Commun. Rev., ACM (2008).
  • X. Li, S. Kumar, RUFT-PL: A Fault-Tolerant Fat-Tree with Parallel Links, Proc. IEEE ICCCN (2013) 1–7.
  • C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, S. Lu, BCube: A high performance, server-centric network architecture for modular data centers, SIGCOMM Comput. Commun. Rev. 39 (4) (2009) 63–74.
  • C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, S. Lu, DCell: A scalable and fault-tolerant network structure for data centers, SIGCOMM Comput. Commun. Rev. 38 (4) (2008) 75–86.
  • A. Singla, C.-Y. Hong, L. Popa, P.B. Godfrey, Jellyfish: Networking Data Centers Randomly (2012).
  • B. Lebiednik, A. Mangal, N. Tiwari, A Survey and Evaluation of Data Center Network Topologies, arXiv preprint arXiv:1605.01701 (2016). Available from: http://arxiv.org/abs/1605.01701.
  • H. Emesowum, A. Paraskelidis, M. Adda, Fault tolerance capability of cloud data center, Proc. ICCP (2017) 495–502. https://doi.org/10.1109/iccp.2017.8117053
  • H. Emesowum, A. Paraskelidis, M. Adda, Management of fault tolerance and traffic congestion in cloud data center, Proc. ICOIACT (2018) 10–15. https://doi.org/10.1109/icoiact.2018.8350692
  • D.F. Bermúdez Garzón, C.G. Requena, M.E. Gómez, P. López, J. Duato, A family of fault-tolerant efficient indirect topologies, IEEE Trans. Parallel Distrib. Syst. 27 (4) (2016) 927–940. https://doi.org/10.1109/TPDS.2015.2430863
  • J. Calle-Cancho, C. Cruz-Carrasco, D. Cortés-Polo, J. Galeano-Brajones, J. Carmona-Murillo, Enhancing Programmability in Next-Generation Networks: An Innovative Simulation Approach, Electron. (Switzerland) 13 (3) (2024).
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Information Security Management, Information Systems Development Methodologies and Practice, Information Systems (Other)
Journal Section Research Article
Authors

Hüseyin Taner Gökmen 0000-0002-7751-3707

Mevlüt Ersoy 0000-0003-2963-7729

Submission Date May 21, 2025
Acceptance Date June 15, 2025
Publication Date June 30, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Gökmen, H. T., & Ersoy, M. (2025). BULUT BİLİŞİM AĞ TOPOLOJİLERİNDE PERFORMANS VE HATA TOLERANSI ANALİZİ. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi, 9(1), 58-69. https://doi.org/10.62301/usmtd.1703696
AMA Gökmen HT, Ersoy M. BULUT BİLİŞİM AĞ TOPOLOJİLERİNDE PERFORMANS VE HATA TOLERANSI ANALİZİ. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. June 2025;9(1):58-69. doi:10.62301/usmtd.1703696
Chicago Gökmen, Hüseyin Taner, and Mevlüt Ersoy. “BULUT BİLİŞİM AĞ TOPOLOJİLERİNDE PERFORMANS VE HATA TOLERANSI ANALİZİ”. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi 9, no. 1 (June 2025): 58-69. https://doi.org/10.62301/usmtd.1703696.
EndNote Gökmen HT, Ersoy M (June 1, 2025) BULUT BİLİŞİM AĞ TOPOLOJİLERİNDE PERFORMANS VE HATA TOLERANSI ANALİZİ. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 9 1 58–69.
IEEE H. T. Gökmen and M. Ersoy, “BULUT BİLİŞİM AĞ TOPOLOJİLERİNDE PERFORMANS VE HATA TOLERANSI ANALİZİ”, Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, vol. 9, no. 1, pp. 58–69, 2025, doi: 10.62301/usmtd.1703696.
ISNAD Gökmen, Hüseyin Taner - Ersoy, Mevlüt. “BULUT BİLİŞİM AĞ TOPOLOJİLERİNDE PERFORMANS VE HATA TOLERANSI ANALİZİ”. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 9/1 (June2025), 58-69. https://doi.org/10.62301/usmtd.1703696.
JAMA Gökmen HT, Ersoy M. BULUT BİLİŞİM AĞ TOPOLOJİLERİNDE PERFORMANS VE HATA TOLERANSI ANALİZİ. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. 2025;9:58–69.
MLA Gökmen, Hüseyin Taner and Mevlüt Ersoy. “BULUT BİLİŞİM AĞ TOPOLOJİLERİNDE PERFORMANS VE HATA TOLERANSI ANALİZİ”. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi, vol. 9, no. 1, 2025, pp. 58-69, doi:10.62301/usmtd.1703696.
Vancouver Gökmen HT, Ersoy M. BULUT BİLİŞİM AĞ TOPOLOJİLERİNDE PERFORMANS VE HATA TOLERANSI ANALİZİ. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. 2025;9(1):58-69.