Research Article
BibTex RIS Cite

INTERACTIVE X-RAY TUBE SIMULATION: A TOOL FOR BIOMEDICAL EDUCATION

Year 2025, Volume: 9 Issue: 1, 94 - 106, 30.06.2025
https://doi.org/10.62301/usmtd.1707321

Abstract

This paper presents an interactive X-ray Tube Simulator designed for students in biomedical engineering and biomedical device technology. Developed using HTML, CSS, and JavaScript and integrating the Chart.js library for dynamic graphical representations, this simulator offers dynamic visualizations and real-time graphical analysis to understand X-ray tube operation comprehensively. The simulator allows users to select tube voltage (kV), filament current (mA), exposure time (ms), anode angle (°), anode rotation speed (RPM), anode material (Tungsten, Molybdenum, Rhodium), cathode thickness (mm), filter thickness (mm), filter material (Aluminum, Copper, Molybdenum), collimator aperture (mm), chamber distance (cm), glass type (Lead, Borosilicate) and cooling type (Oil, Water), Air) and instantly observe their effects on X-ray spectra, radiation dose, heat accumulation and energy efficiency. This tool aims to bridge the gap between theoretical knowledge and practical application, promoting a deeper understanding of X-ray physics and safety considerations in a safe and cost-effective environment.

References

  • S.F. Keevil, Physics and medicine: a historical perspective, Lancet 379 (9825) (2012) 1517–1524.
  • F. Nüsslin, Wilhelm Conrad Röntgen: The scientist and his discovery, Phys. Medica 79 (2020) 65–68.
  • Y.M. Al-Worafi, Radiology and Medical Imaging Research in Developing Countries, in: Handbook of Medical and Health Sciences in Developing Countries: Education, Practice, and Research, Springer Int. Publ., Cham, 2024, pp. 1–29.
  • J.G.J. Lftta, A.N.A.A. Zahra, A.H.J. Ashour, A.H.K. Nasser, A.N. Shanawa, X-Rays and Their Uses on The Human Body, Curr. Clin. Med. Educ. 2 (8) (2024) 91–115.
  • M.S. Linet, et al., Cancer risks associated with external radiation from diagnostic imaging procedures, CA Cancer J. Clin. 62 (2) (2012) 75–100.
  • M. Kurudirek, Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications, Radiat. Phys. Chem. 102 (2014) 139–146.
  • S. Prabhu, D.K. Naveen, S. Bangera, B.S. Bhat, Production of x-rays using x-ray tube, J. Phys. Conf. Ser. 1712 (1) (2020) 012036.
  • M.J. Yaffe, J.A. Rowlands, X-ray detectors for digital radiography, Phys. Med. Biol. 42 (1) (1997).
  • C. Cao, et al., Emerging X-ray imaging technologies for energy materials, Mater. Today 34 (2020) 132–147.
  • A.H. Zamzam, et al., A systematic review of medical equipment reliability assessment in improving the quality of healthcare services, Front. Public Health 9 (2021) 753951.
  • A. Haleem, M. Javaid, R.P. Singh, R. Suman, Medical 4.0 technologies for healthcare: Features, capabilities, and applications, Internet Things Cyber-Phys. Syst. 2 (2022) 12–30.
  • F. Albert, Principles and applications of x-ray light sources driven by laser wakefield acceleration, Phys. Plasmas 30 (5) (2023) 050902.
  • M. Berger, Q. Yang, A. Maier, X-ray Imaging, in: Medical Imaging Systems: An Introductory Guide, 2018, pp. 119–145.
  • H. Jung, Basic physical principles and clinical applications of computed tomography, Prog. Med. Phys. 32 (1) (2021) 1–17.
  • M.K.M. Alharbi, A. Zhou, M. Naunton, R. Davidson, C. Makanjee, Innovations in X-ray tube design and instrumentation for conventional radiological applications: a scoping review, Imaging Sci. J. (2025) 1–16.
  • J.A. Seibert, X-ray imaging physics for nuclear medicine technologists. Part 1: Basic principles of x-ray production, J. Nucl. Med. Technol. 32 (3) (2004) 139–147.
  • T. Bashore, Fundamentals of x‐ray imaging and radiation safety, Catheter. Cardiovasc. Interv. 54 (1) (2001) 126–135.
  • National Center for Biotechnology Information, PubChem Element Information, https://pubchem.ncbi.nlm.nih.gov/element (accessed 26.05.25).

ETKİLEŞİMLİ X-IŞINI TÜPÜ SİMÜLASYONU: BİYOMEDİKAL EĞİTİM İÇİN BİR ARAÇ

Year 2025, Volume: 9 Issue: 1, 94 - 106, 30.06.2025
https://doi.org/10.62301/usmtd.1707321

Abstract

Bu çalışma, biyomedikal mühendisliği ve biyomedikal cihaz teknolojisi öğrencileri için tasarlanmış etkileşimli bir X-Işını Tüpü Simülatörü sunmaktadır. HTML, CSS ve JavaScript kullanılarak geliştirilen ve dinamik grafiksel gösterimler için Chart.js kütüphanesini entegre eden bu simülatör, X-ışını tüpü operasyonunun kapsamlı bir şekilde anlaşılmasını sağlamak amacıyla dinamik görselleştirmeler ve gerçek zamanlı grafik analizleri sunar. Simülatör, kullanıcıların tüp voltajı (kV), flaman akımı (mA), maruz kalma süresi (ms), anot açısı (°), anot dönüş hızı (RPM), anot materyali (Tungsten, Molibden, Rodyum), katot kalınlığı (mm), filtre kalınlığı (mm), filtre materyali (Alüminyum, Bakır, Molibden), kolimatör açıklığı (mm), oda mesafesi (cm), cam türü (Kurşun, Borosilikat) ve soğutma türü (Yağ, Su, Hava) gibi tüm temel parametreleri manipüle etmelerine ve bunların X-ışını spektrumları, radyasyon dozu, ısı birikimi ve enerji verimliliği üzerindeki etkilerini anında gözlemlemelerine olanak tanır. Bu araç teorik bilgi ile pratik uygulama arasındaki boşluğu doldurmayı, güvenli ve uygun maliyetli bir ortamda X-ışını fiziği ve güvenlik hususlarının daha derinlemesine anlaşılmasını teşvik etmeyi amaçlamaktadır.

References

  • S.F. Keevil, Physics and medicine: a historical perspective, Lancet 379 (9825) (2012) 1517–1524.
  • F. Nüsslin, Wilhelm Conrad Röntgen: The scientist and his discovery, Phys. Medica 79 (2020) 65–68.
  • Y.M. Al-Worafi, Radiology and Medical Imaging Research in Developing Countries, in: Handbook of Medical and Health Sciences in Developing Countries: Education, Practice, and Research, Springer Int. Publ., Cham, 2024, pp. 1–29.
  • J.G.J. Lftta, A.N.A.A. Zahra, A.H.J. Ashour, A.H.K. Nasser, A.N. Shanawa, X-Rays and Their Uses on The Human Body, Curr. Clin. Med. Educ. 2 (8) (2024) 91–115.
  • M.S. Linet, et al., Cancer risks associated with external radiation from diagnostic imaging procedures, CA Cancer J. Clin. 62 (2) (2012) 75–100.
  • M. Kurudirek, Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications, Radiat. Phys. Chem. 102 (2014) 139–146.
  • S. Prabhu, D.K. Naveen, S. Bangera, B.S. Bhat, Production of x-rays using x-ray tube, J. Phys. Conf. Ser. 1712 (1) (2020) 012036.
  • M.J. Yaffe, J.A. Rowlands, X-ray detectors for digital radiography, Phys. Med. Biol. 42 (1) (1997).
  • C. Cao, et al., Emerging X-ray imaging technologies for energy materials, Mater. Today 34 (2020) 132–147.
  • A.H. Zamzam, et al., A systematic review of medical equipment reliability assessment in improving the quality of healthcare services, Front. Public Health 9 (2021) 753951.
  • A. Haleem, M. Javaid, R.P. Singh, R. Suman, Medical 4.0 technologies for healthcare: Features, capabilities, and applications, Internet Things Cyber-Phys. Syst. 2 (2022) 12–30.
  • F. Albert, Principles and applications of x-ray light sources driven by laser wakefield acceleration, Phys. Plasmas 30 (5) (2023) 050902.
  • M. Berger, Q. Yang, A. Maier, X-ray Imaging, in: Medical Imaging Systems: An Introductory Guide, 2018, pp. 119–145.
  • H. Jung, Basic physical principles and clinical applications of computed tomography, Prog. Med. Phys. 32 (1) (2021) 1–17.
  • M.K.M. Alharbi, A. Zhou, M. Naunton, R. Davidson, C. Makanjee, Innovations in X-ray tube design and instrumentation for conventional radiological applications: a scoping review, Imaging Sci. J. (2025) 1–16.
  • J.A. Seibert, X-ray imaging physics for nuclear medicine technologists. Part 1: Basic principles of x-ray production, J. Nucl. Med. Technol. 32 (3) (2004) 139–147.
  • T. Bashore, Fundamentals of x‐ray imaging and radiation safety, Catheter. Cardiovasc. Interv. 54 (1) (2001) 126–135.
  • National Center for Biotechnology Information, PubChem Element Information, https://pubchem.ncbi.nlm.nih.gov/element (accessed 26.05.25).
There are 18 citations in total.

Details

Primary Language English
Subjects Reinforcement Learning
Journal Section Research Article
Authors

Ali Özhan Akyüz 0000-0001-9265-7293

Durmuş Temiz 0000-0002-7350-7502

Submission Date May 27, 2025
Acceptance Date June 20, 2025
Publication Date June 30, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Akyüz, A. Ö., & Temiz, D. (2025). INTERACTIVE X-RAY TUBE SIMULATION: A TOOL FOR BIOMEDICAL EDUCATION. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi, 9(1), 94-106. https://doi.org/10.62301/usmtd.1707321
AMA Akyüz AÖ, Temiz D. INTERACTIVE X-RAY TUBE SIMULATION: A TOOL FOR BIOMEDICAL EDUCATION. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. June 2025;9(1):94-106. doi:10.62301/usmtd.1707321
Chicago Akyüz, Ali Özhan, and Durmuş Temiz. “INTERACTIVE X-RAY TUBE SIMULATION: A TOOL FOR BIOMEDICAL EDUCATION”. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi 9, no. 1 (June 2025): 94-106. https://doi.org/10.62301/usmtd.1707321.
EndNote Akyüz AÖ, Temiz D (June 1, 2025) INTERACTIVE X-RAY TUBE SIMULATION: A TOOL FOR BIOMEDICAL EDUCATION. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 9 1 94–106.
IEEE A. Ö. Akyüz and D. Temiz, “INTERACTIVE X-RAY TUBE SIMULATION: A TOOL FOR BIOMEDICAL EDUCATION”, Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, vol. 9, no. 1, pp. 94–106, 2025, doi: 10.62301/usmtd.1707321.
ISNAD Akyüz, Ali Özhan - Temiz, Durmuş. “INTERACTIVE X-RAY TUBE SIMULATION: A TOOL FOR BIOMEDICAL EDUCATION”. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 9/1 (June2025), 94-106. https://doi.org/10.62301/usmtd.1707321.
JAMA Akyüz AÖ, Temiz D. INTERACTIVE X-RAY TUBE SIMULATION: A TOOL FOR BIOMEDICAL EDUCATION. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. 2025;9:94–106.
MLA Akyüz, Ali Özhan and Durmuş Temiz. “INTERACTIVE X-RAY TUBE SIMULATION: A TOOL FOR BIOMEDICAL EDUCATION”. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi, vol. 9, no. 1, 2025, pp. 94-106, doi:10.62301/usmtd.1707321.
Vancouver Akyüz AÖ, Temiz D. INTERACTIVE X-RAY TUBE SIMULATION: A TOOL FOR BIOMEDICAL EDUCATION. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. 2025;9(1):94-106.