Research Article
BibTex RIS Cite

EFFLUENT DECOLORIZATION FOR SUSTAINABLE TEXTILE: WASTEWATER TREATMENT, ENVIRONMENTAL RISK AND HUMAN HEALTH

Year 2024, Volume: 8 Issue: 1, 1 - 7, 26.06.2024
https://doi.org/10.62301/usmtd.1453340

Abstract

Merely 0.4% of the world's water is accessible for human and animal consumption, a stark reminder of our planet's limited freshwater resources. With the escalating demands driven by population growth and industrial pollution, wastewater generation rates have surged. Of particular concern is the textile industry's heavy reliance on water in production processes, coupled with the challenge of treating wastewater laden with significant concentrations of dyestuffs, underscoring the urgent need for ecologically sound solutions.

In this study, we explore the efficacy of various parameters, including mechanical agitation and ozone dosage, in the decolorization using Fuzzy Logic estimation techniques. Our findings reveal that higher mechanical agitation enhances ozonation rates, albeit at the expense of decreased efficiency in degrading dyeing auxiliary chemicals.

References

  • [1] M. A. Hassaan, E. N. Ahmed, Health and environmental impacts of dyes: mini review, American Journal of Environmental Science and Engineering 1(3) (2017) 64-67.
  • [2] N. Reddy, L. Chen, Y. Zhang, Y. Yang, Reducing environmental pollution of the textile industry using keratin as alternative sizing agent to poly (vinyl alcohol), Journal of Cleaner Production (65) (2014) 561-567.
  • [3] A. Hasanbeigi, L. A. Price, Technical review of emerging technologies for energy and water efficiency and pollution reduction in the textile industry, Journal of Cleaner Production (95) (2015) 30-44.
  • [4] H. Kopperi, M. Hemalatha, B. R. Kiran, J. Santhosh, S. V. Mohan, Sustainable consideration for traditional textile handloom cluster/village in pollution abatement–a case study. Environmental Pollution (324) (2023) 121320.
  • [5] B. Cantoni, G. Bergna, E. Baldini, F. Malpei, M. Antonelli, PFAS in textile wastewater: An integrated scenario analysis for interventions prioritization to reduce environmental risk, Process Safety and Environmental Protection (183) (2024) 437-445.
  • [6] K. Gomes, S. Caucci, J. Morris, E. Guenther, J. Miggelbrink, Sustainability transformation in the textile industry—The case of wastewater management Business Strategy & Development, 7(1) (2024) e324.
  • [7] A. P. Periyasamy, Microfiber emissions from functionalized textiles: potential threat for human health and environmental risks, Toxics 11(5) (2023) 406.
  • [8] S. Samsami, M. Mohamadi, M.H. Sarrafzadeh, E.R. Rene, M. Firoozbahr, Recent advances in the treatment of dye-containing wastewater from textile industries: overview and perspectives. Process Saf. Environ. Prot. (143) (2020) 138–163.
  • [9] Y. W. Kim, J. H. Kim, D. H. Moon, H. J. Shin, Adsorption and precipitation of anionic dye Reactive Red 120 from aqueous solution by aminopropyl functionalized magnesium phyllosilicate, Korean Journal of Chemical Engineering (36) (2019) 101-108.
  • [10] S. R. Shukla, Pollution abatement and waste minimisation in textile dyeing, In Environmental aspects of textile dyeing, Woodhead Publishing (2007) 116-148.
  • [11] A. Klepacz-Smółka, Application of anoxic fixed film and aerobic CSTR bioreactor in treatment of nanofiltration concentrate of real textile wastewater, Chemical Papers (64) (2010) 230-236.
  • [12] M. Geysoğlu, Sürdürülebilirlik bağlamında cehri ve pinar bitkileriyle pamuklu kumaşların boyanması ve boyamanın kumaş performansına etkisi, International Journal Of Social Humanities Sciences Research 9(90) (2022) 2474-2484.
  • [13] C. A., Somensi, Use of ozone in a pilot-scale plant for textile wastewater pre-treatment: physico-chemical efficiency, degradation by-products identification and environmental toxicity of treated wastewater, Journal of hazardous materials 175(1-3) (2010) 235-240.
  • [14] A. E. Ali, Removal of Azo Dyes from Aqueous Effluent Using Bio-Based Activated Carbons: Toxicity Aspects and Environmental Impact, Separations 10(9) (2023) 506.
  • [15] V. Mishra, Integrating microalgae into textile wastewater treatment processes: Advancements and opportunities, Journal of Water Process Engineering (55) (2023)104128.
  • [16] B. Mu, Complete recycling of polymers and dyes from polyester/cotton blended textiles via cost-effective and destruction-minimized dissolution, swelling, precipitation, and separation, Resources, Conservation and Recycling (199) (2023) 107275.
  • [17] F. Akarslan, Dokuma kumaşların kuruma hızı değerlerinin bulanık mantık metodu ile belirlenmesi, Tekstil Teknolojileri Elektronik Dergisi 1(2) (2007) 15-23.
  • [18] K. F. Akarslan, M. Kodaloğlu, Determining the drying rates of fabrics with different knit structures by fuzzy logic method, International Journal of Computational and Experimental Science And Engineering (9) (2023)191-196.
  • [19] F. Akarslan Kodaloğlu, Fuzzy modeling applied to a microwave dryer: Cotton weaving fabric drying process, Uluslararası Teknolojik Bilimler Dergisi 15 (1) (2023) 19-26.
  • [20] K. F. Akarslan, M. Kodaloğlu, Fuzzy logic control (flc) for a yarn conditioning system, International Journal of Engineering and Innovative Research 5(3) (2023)170-179.
  • [21] F. Akarslan Kodaloğlu, A. Elbir, M. E. Şahin, Wool drying process ın heat-pump-assisted dryer by fuzzy logic modelling. Thermal Science (27) (2023) Issue 4B. DOI: 10.2298/TSCI2304043A.
  • [22] M. Kodaloğlu, F. Akarslan Kodaloğlu, Evaluation of noise on ring spinning machines, Mühendislik Bilimleri Ve Tasarım Dergisi 11(2) (2023) 768-775.
  • [23] M. Kodaloğlu, F. Akarslan Kodaloğlu, Evaluation of thermal comfort in terms of occupational safety in weavıng facilities by fuzzy logic, International Journal of 3D Printing Technologies and Digital Industry 6(2) (2022) 273-279.
  • [24] M. Kodaloğlu, F. Akarslan Kodaloğlu, Prediction of The Ultraviolet Protection Provided by Woven Fabric Construction Using Fuzzy Logic, Süleyman Demirel University Faculty of Arts and Science Journal of Science, 19 (1) (2024) 10-22.
  • [25] A. M. Jorge, Textile dyes effluents: A current scenario and the use of aqueous biphasic systems for the recovery of dyes, Journal of Water Process Engineering (55) (2023)104125.
  • [26] Periyasamy, A. P. Recent Advances in the Remediation of Textile-Dye-Containing Wastewater: Prioritizing Human Health and Sustainable Wastewater Treatment, Sustainability 16(2) (2024) 495.
  • [27] L. Rendón-Castrillón, Treatment of water from the textile industry contaminated with indigo dye: A hybrid approach combining bioremediation and nanofiltration for sustainable reuse, Case Studies in Chemical and Environmental Engineering (8) (2023) 100498.

SÜRDÜRÜLEBİLİR TEKSTİL İÇİN ATIK SU RENK GİDERME: ATIK SU ARITIMI, ÇEVRESEL RİSK VE İNSAN SAĞLIĞI

Year 2024, Volume: 8 Issue: 1, 1 - 7, 26.06.2024
https://doi.org/10.62301/usmtd.1453340

Abstract

Dünyadaki suyun ancak % 0,4'ü insanlar ve hayvanlar için kullanılabilir. Nüfus artışından, sanayiden kaynaklanan kirlilik nedeniyle atık su oranı yükselmiştir. Tekstilde üretim sırasında büyük miktarda su kullanması ve yüksek miktarda boyar madde içeren atık suların arıtılması ekolojik açıdan önem kazanmaktadır. Bu sebeple atık suların arıtılmasında mekanik karıştırma yönteminin kullanılmasının önemini artırmaktadır.

Bu çalışmada mekanik hareket, ozon dozu gibi parametrelerin renk gidermedeki etkinliği bulanık mantık tahminleme yöntemi ile araştırması şeklinde incelenmiştir. Araştırma sonucunda yüksek mekanik hareket altında ozonlama hızının arttığı, boyama yardımcı kimyasallarının ozonlama verimini düşürdüğü görülmüştür.

References

  • [1] M. A. Hassaan, E. N. Ahmed, Health and environmental impacts of dyes: mini review, American Journal of Environmental Science and Engineering 1(3) (2017) 64-67.
  • [2] N. Reddy, L. Chen, Y. Zhang, Y. Yang, Reducing environmental pollution of the textile industry using keratin as alternative sizing agent to poly (vinyl alcohol), Journal of Cleaner Production (65) (2014) 561-567.
  • [3] A. Hasanbeigi, L. A. Price, Technical review of emerging technologies for energy and water efficiency and pollution reduction in the textile industry, Journal of Cleaner Production (95) (2015) 30-44.
  • [4] H. Kopperi, M. Hemalatha, B. R. Kiran, J. Santhosh, S. V. Mohan, Sustainable consideration for traditional textile handloom cluster/village in pollution abatement–a case study. Environmental Pollution (324) (2023) 121320.
  • [5] B. Cantoni, G. Bergna, E. Baldini, F. Malpei, M. Antonelli, PFAS in textile wastewater: An integrated scenario analysis for interventions prioritization to reduce environmental risk, Process Safety and Environmental Protection (183) (2024) 437-445.
  • [6] K. Gomes, S. Caucci, J. Morris, E. Guenther, J. Miggelbrink, Sustainability transformation in the textile industry—The case of wastewater management Business Strategy & Development, 7(1) (2024) e324.
  • [7] A. P. Periyasamy, Microfiber emissions from functionalized textiles: potential threat for human health and environmental risks, Toxics 11(5) (2023) 406.
  • [8] S. Samsami, M. Mohamadi, M.H. Sarrafzadeh, E.R. Rene, M. Firoozbahr, Recent advances in the treatment of dye-containing wastewater from textile industries: overview and perspectives. Process Saf. Environ. Prot. (143) (2020) 138–163.
  • [9] Y. W. Kim, J. H. Kim, D. H. Moon, H. J. Shin, Adsorption and precipitation of anionic dye Reactive Red 120 from aqueous solution by aminopropyl functionalized magnesium phyllosilicate, Korean Journal of Chemical Engineering (36) (2019) 101-108.
  • [10] S. R. Shukla, Pollution abatement and waste minimisation in textile dyeing, In Environmental aspects of textile dyeing, Woodhead Publishing (2007) 116-148.
  • [11] A. Klepacz-Smółka, Application of anoxic fixed film and aerobic CSTR bioreactor in treatment of nanofiltration concentrate of real textile wastewater, Chemical Papers (64) (2010) 230-236.
  • [12] M. Geysoğlu, Sürdürülebilirlik bağlamında cehri ve pinar bitkileriyle pamuklu kumaşların boyanması ve boyamanın kumaş performansına etkisi, International Journal Of Social Humanities Sciences Research 9(90) (2022) 2474-2484.
  • [13] C. A., Somensi, Use of ozone in a pilot-scale plant for textile wastewater pre-treatment: physico-chemical efficiency, degradation by-products identification and environmental toxicity of treated wastewater, Journal of hazardous materials 175(1-3) (2010) 235-240.
  • [14] A. E. Ali, Removal of Azo Dyes from Aqueous Effluent Using Bio-Based Activated Carbons: Toxicity Aspects and Environmental Impact, Separations 10(9) (2023) 506.
  • [15] V. Mishra, Integrating microalgae into textile wastewater treatment processes: Advancements and opportunities, Journal of Water Process Engineering (55) (2023)104128.
  • [16] B. Mu, Complete recycling of polymers and dyes from polyester/cotton blended textiles via cost-effective and destruction-minimized dissolution, swelling, precipitation, and separation, Resources, Conservation and Recycling (199) (2023) 107275.
  • [17] F. Akarslan, Dokuma kumaşların kuruma hızı değerlerinin bulanık mantık metodu ile belirlenmesi, Tekstil Teknolojileri Elektronik Dergisi 1(2) (2007) 15-23.
  • [18] K. F. Akarslan, M. Kodaloğlu, Determining the drying rates of fabrics with different knit structures by fuzzy logic method, International Journal of Computational and Experimental Science And Engineering (9) (2023)191-196.
  • [19] F. Akarslan Kodaloğlu, Fuzzy modeling applied to a microwave dryer: Cotton weaving fabric drying process, Uluslararası Teknolojik Bilimler Dergisi 15 (1) (2023) 19-26.
  • [20] K. F. Akarslan, M. Kodaloğlu, Fuzzy logic control (flc) for a yarn conditioning system, International Journal of Engineering and Innovative Research 5(3) (2023)170-179.
  • [21] F. Akarslan Kodaloğlu, A. Elbir, M. E. Şahin, Wool drying process ın heat-pump-assisted dryer by fuzzy logic modelling. Thermal Science (27) (2023) Issue 4B. DOI: 10.2298/TSCI2304043A.
  • [22] M. Kodaloğlu, F. Akarslan Kodaloğlu, Evaluation of noise on ring spinning machines, Mühendislik Bilimleri Ve Tasarım Dergisi 11(2) (2023) 768-775.
  • [23] M. Kodaloğlu, F. Akarslan Kodaloğlu, Evaluation of thermal comfort in terms of occupational safety in weavıng facilities by fuzzy logic, International Journal of 3D Printing Technologies and Digital Industry 6(2) (2022) 273-279.
  • [24] M. Kodaloğlu, F. Akarslan Kodaloğlu, Prediction of The Ultraviolet Protection Provided by Woven Fabric Construction Using Fuzzy Logic, Süleyman Demirel University Faculty of Arts and Science Journal of Science, 19 (1) (2024) 10-22.
  • [25] A. M. Jorge, Textile dyes effluents: A current scenario and the use of aqueous biphasic systems for the recovery of dyes, Journal of Water Process Engineering (55) (2023)104125.
  • [26] Periyasamy, A. P. Recent Advances in the Remediation of Textile-Dye-Containing Wastewater: Prioritizing Human Health and Sustainable Wastewater Treatment, Sustainability 16(2) (2024) 495.
  • [27] L. Rendón-Castrillón, Treatment of water from the textile industry contaminated with indigo dye: A hybrid approach combining bioremediation and nanofiltration for sustainable reuse, Case Studies in Chemical and Environmental Engineering (8) (2023) 100498.
There are 27 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Murat Kodaloğlu 0000-0001-6644-8068

Publication Date June 26, 2024
Submission Date March 15, 2024
Acceptance Date May 12, 2024
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

APA Kodaloğlu, M. (2024). EFFLUENT DECOLORIZATION FOR SUSTAINABLE TEXTILE: WASTEWATER TREATMENT, ENVIRONMENTAL RISK AND HUMAN HEALTH. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi, 8(1), 1-7. https://doi.org/10.62301/usmtd.1453340
AMA Kodaloğlu M. EFFLUENT DECOLORIZATION FOR SUSTAINABLE TEXTILE: WASTEWATER TREATMENT, ENVIRONMENTAL RISK AND HUMAN HEALTH. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. June 2024;8(1):1-7. doi:10.62301/usmtd.1453340
Chicago Kodaloğlu, Murat. “EFFLUENT DECOLORIZATION FOR SUSTAINABLE TEXTILE: WASTEWATER TREATMENT, ENVIRONMENTAL RISK AND HUMAN HEALTH”. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi 8, no. 1 (June 2024): 1-7. https://doi.org/10.62301/usmtd.1453340.
EndNote Kodaloğlu M (June 1, 2024) EFFLUENT DECOLORIZATION FOR SUSTAINABLE TEXTILE: WASTEWATER TREATMENT, ENVIRONMENTAL RISK AND HUMAN HEALTH. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 8 1 1–7.
IEEE M. Kodaloğlu, “EFFLUENT DECOLORIZATION FOR SUSTAINABLE TEXTILE: WASTEWATER TREATMENT, ENVIRONMENTAL RISK AND HUMAN HEALTH”, Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, vol. 8, no. 1, pp. 1–7, 2024, doi: 10.62301/usmtd.1453340.
ISNAD Kodaloğlu, Murat. “EFFLUENT DECOLORIZATION FOR SUSTAINABLE TEXTILE: WASTEWATER TREATMENT, ENVIRONMENTAL RISK AND HUMAN HEALTH”. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 8/1 (June 2024), 1-7. https://doi.org/10.62301/usmtd.1453340.
JAMA Kodaloğlu M. EFFLUENT DECOLORIZATION FOR SUSTAINABLE TEXTILE: WASTEWATER TREATMENT, ENVIRONMENTAL RISK AND HUMAN HEALTH. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. 2024;8:1–7.
MLA Kodaloğlu, Murat. “EFFLUENT DECOLORIZATION FOR SUSTAINABLE TEXTILE: WASTEWATER TREATMENT, ENVIRONMENTAL RISK AND HUMAN HEALTH”. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi, vol. 8, no. 1, 2024, pp. 1-7, doi:10.62301/usmtd.1453340.
Vancouver Kodaloğlu M. EFFLUENT DECOLORIZATION FOR SUSTAINABLE TEXTILE: WASTEWATER TREATMENT, ENVIRONMENTAL RISK AND HUMAN HEALTH. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. 2024;8(1):1-7.