Research Article
BibTex RIS Cite

DESIGN, MANUFACTURING AND CONTROL OF ROBOTIC SPY BIRD

Year 2024, Volume: 8 Issue: 2, 119 - 133, 31.12.2024
https://doi.org/10.62301/usmtd.1511546

Abstract

In this study, the design and production of a robotic spy bird for use in military and cross-border operations is discussed. The advantages of using robotic birds inspired by birds, better camouflage, silent and efficient flight instead of the widely used unmanned aerial vehicles are presented. A robotic bird that can be integrated with surveillance and monitoring systems to enhance Turkey's border security is designed. The prototype of the robotic spy bird was realized in three main stages: mechanical system design and manufacturing, electrical-electronic system design and control software. In mechanical system design and manufacturing, the main body, wings and other parts were designed using Solidworks program and manufactured with FDM printer. In the electrical-electronic system design, components such as Raspberry Pi 4, WiFi Model B camera, Lipo battery and A2212 1400KV drone motor were used. Functions such as face scanning and target detection were realized using Python language as the control software. The robotic spy bird can be controlled by remote control, can record audio and video, perform image processing of the objects around it and transfer the data to the control panel.

References

  • R. Autar, J. Walker, Design and optimization of flapping wing mechanisms, Journal of Aircraft 44 (4) (2007) 1155–1165.
  • C. Akan, P.C. Murphy, Development of a flapping wing micro air vehicle: From concept to demonstration, Journal of Field Robotics 27 (3) (2010) 335–347.
  • W. Shyy, H. Aono, C.K. Kang, Recent progress in flapping wing aerodynamics and aeroelasticity, Progress in Aerospace Sciences 44 (3) (2008) 214–232.
  • Z.J. Wang, Aerodynamics of flapping flight with application to insects and micro air vehicles, Journal of Fluids and Structures 20 (4) (2005) 491–509.
  • J.M. Perez, L.G. Torres, P.H. Oosthuizen, Design and construction of an ornithopter, IEEE Transactions on Robotics 31 (2) (2015) 432–445.
  • P. Mahouti, 3 boyutlu yazıcı teknolojisi ile bir mikroşerit yama antenin maliyet etkin üretimi, Mühendislik Bilimleri ve Tasarım Dergisi 7 (3) (2019) 473–479.
  • N. Hopkinson, R. Hague, P. Dickens, Introduction to rapid manufacturing, in: Rapid Manufacturing: An Industrial Revolution for the Digital Age, first ed., John Wiley & Sons, Hoboken, 2006, pp. 1–2.
  • G.N. Levy, R. Schindel, J.P. Kruth, Rapid manufacturing and rapid tooling with layer manufacturing (im) technologies: State of the art and future perspectives, CIRP Annals - Manufacturing Technology 52 (2) (2003) 589–609.
  • J.P. Kruth, M.C. Leu, T. Nakagawa, Progress in additive manufacturing and rapid prototyping, CIRP Annals - Manufacturing Technology 47 (2) (1998) 525–540.
  • E.C. Santos, M. Shiomi, K. Osakada, T. Laoui, Rapid manufacturing of metal components by laser forming, International Journal of Machine Tools and Manufacture 46 (12) (2006) 1459–1468.
  • E. Balasubramanian, G. Surendar, L.J. Yang, W.C. Wang, C.Y. Jen, S. Salunkhe, Fabrication of flapping wing mechanism using various polymer-based 3D printing techniques and aerodynamic performance evaluation, Journal of Materials Engineering and Performance 32 (4) (2023) 1856–1873.
  • S. Ganesan, B. Esakki, L.J. Yang, D. Rajamani, M. Silambarsan, K. Raghunath, Fabrication of flapping-wing micromechanism assembly using selective laser melting and aerodynamic performance measures, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 14644207211035422 (2021).
  • A. Özlek, İnsansız hava araçlarında elektro-optik sistem seçimi için bütünleşik kaba küme tabanlı BWM-COPRAS yaklaşımı, Master’s thesis, Necmettin Erbakan University, Turkey, 2023.
  • G.B.A. Ronconi, T.J. Batista, V. Merola, The utilization of unmanned aerial vehicles (UAV) for military action in foreign airspace, UFRGSMUN: UFRGS Model United Nations Journal 2 (2014) 137–180.
  • M. Peker, B. İnci, E. Musaoğlu, H. Çobanoğlu, N. Kocakır, Ö. Karademir, İnsan sayma sistemi için gömülü cihazlarda derin öğrenme mimarilerinin performans analizi.
  • M. Piras, N. Grasso, A. Abdul Jabbar, UAV photogrammetric solution using a Raspberry Pi camera module and smart devices: Test and results, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42 (2017) 289–296.
  • T. Kara, A. Yönetken, Robot arm design and control with Raspberry Pi.
  • D. Molloy, Exploring Raspberry Pi: Interfacing to the Real World with Embedded Linux, John Wiley & Sons, 2016.
  • N. Djema, Security and home automation based on Raspberry Pi, Arduino Uno and Node MCU.
  • R. Krauss, Real-time Python: Recent advances in the Raspberry Pi plus Arduino real-time control approach, in: 2020 American Control Conference (ACC), IEEE, 2020, pp. 2088–2093.
  • J.Á. Ariza, S.G. Gil, RaspyLab: A low-cost remote laboratory to learn programming and physical computing through Python and Raspberry Pi, IEEE Revista Iberoamericana de Tecnologias del Aprendizaje 17 (2) (2022) 140–149.
  • B. Aksoy, M. Yücel, H. Sayın, N. Aydın, Ö. Ekrem, Hurma meyvesindeki kalite kontrol işlemlerinin yapay zeka ile tahminlenmesi, Gazi Mühendislik Bilimleri Dergisi 9 (4) (2023) 70–81.
  • S. Srigrarom, W.L. Chan, Ornithopter type flapping wings for autonomous micro air vehicles, Aerospace 2 (2) (2015) 235–278.
  • F.G. Bermudez, R. Fearing, Optical flow on a flapping wing robot, in: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2009, pp. 5027–5032.

ROBOTİK CASUS KUŞUN TASARIMI, İMALATI VE GÖRÜNTÜ İŞLEME TEKNİKLERİ İLE KONTROLÜ

Year 2024, Volume: 8 Issue: 2, 119 - 133, 31.12.2024
https://doi.org/10.62301/usmtd.1511546

Abstract

Bu çalışmada, askeri ve sınır ötesi operasyonlarda kullanılmak üzere geliştirilen bir robotik casus kuşun tasarımı ve üretimi ele alınmaktadır. Günümüzde yaygın olarak kullanılan insansız hava araçlarının yerine, kuşlardan ilham alınarak geliştirilen robotik kuşların kullanımı, daha iyi kamufle olma, sessiz ve verimli uçuş sağlama avantajları sunulmuştur. Türkiye'nin sınır güvenliğini artırmak amacıyla gözetim ve izleme sistemleriyle entegre edilebilecek bir robotik kuş tasarımı yapılmıştır. Robotik casus kuşun prototipi mekanik sistem tasarımı ve imalatı, elektrik-elektronik sistem tasarımı ve kontrol yazılımı olmak üzere üç ana aşamada gerçekleştirilmiştir. Mekanik sistem tasarımı ve imalatında, Solidworks programı kullanılarak ana gövde, kanatlar ve diğer parçalar tasarlanmış ve FDM yazıcı ile üretilmiştir. Elektrik-elektronik sistem tasarımında, Raspberry Pi 4, WiFi Model B kamera, Lipo batarya ve A2212 1400KV drone motoru gibi bileşenler kullanılmıştır. Kontrol yazılımı olarak Python dili kullanılarak, yüz tarama ve hedef tespiti gibi işlevler gerçekleştirilmiştir. Robotik casus kuş, uzaktan kumanda ile kontrol edilip ses ve görüntü kaydı yapabilmekte, etrafındaki nesnelerin görüntü işlemesini gerçekleştirerek kontrol paneline verileri aktarılmıştır. Robotik Casus Kuşun yapılan on adet uçuş testlerinden stabil uçuş, gözetim görüntü kalitesi ve skor değerleri ve pil tüketim performans değerleri istenilen aralıkta elde edilmiştir.

Thanks

Çalışma 1919B012304230 numaralı proje ile maddi destek sağlayan TÜBİTAK’a teşekkür ederiz.

References

  • R. Autar, J. Walker, Design and optimization of flapping wing mechanisms, Journal of Aircraft 44 (4) (2007) 1155–1165.
  • C. Akan, P.C. Murphy, Development of a flapping wing micro air vehicle: From concept to demonstration, Journal of Field Robotics 27 (3) (2010) 335–347.
  • W. Shyy, H. Aono, C.K. Kang, Recent progress in flapping wing aerodynamics and aeroelasticity, Progress in Aerospace Sciences 44 (3) (2008) 214–232.
  • Z.J. Wang, Aerodynamics of flapping flight with application to insects and micro air vehicles, Journal of Fluids and Structures 20 (4) (2005) 491–509.
  • J.M. Perez, L.G. Torres, P.H. Oosthuizen, Design and construction of an ornithopter, IEEE Transactions on Robotics 31 (2) (2015) 432–445.
  • P. Mahouti, 3 boyutlu yazıcı teknolojisi ile bir mikroşerit yama antenin maliyet etkin üretimi, Mühendislik Bilimleri ve Tasarım Dergisi 7 (3) (2019) 473–479.
  • N. Hopkinson, R. Hague, P. Dickens, Introduction to rapid manufacturing, in: Rapid Manufacturing: An Industrial Revolution for the Digital Age, first ed., John Wiley & Sons, Hoboken, 2006, pp. 1–2.
  • G.N. Levy, R. Schindel, J.P. Kruth, Rapid manufacturing and rapid tooling with layer manufacturing (im) technologies: State of the art and future perspectives, CIRP Annals - Manufacturing Technology 52 (2) (2003) 589–609.
  • J.P. Kruth, M.C. Leu, T. Nakagawa, Progress in additive manufacturing and rapid prototyping, CIRP Annals - Manufacturing Technology 47 (2) (1998) 525–540.
  • E.C. Santos, M. Shiomi, K. Osakada, T. Laoui, Rapid manufacturing of metal components by laser forming, International Journal of Machine Tools and Manufacture 46 (12) (2006) 1459–1468.
  • E. Balasubramanian, G. Surendar, L.J. Yang, W.C. Wang, C.Y. Jen, S. Salunkhe, Fabrication of flapping wing mechanism using various polymer-based 3D printing techniques and aerodynamic performance evaluation, Journal of Materials Engineering and Performance 32 (4) (2023) 1856–1873.
  • S. Ganesan, B. Esakki, L.J. Yang, D. Rajamani, M. Silambarsan, K. Raghunath, Fabrication of flapping-wing micromechanism assembly using selective laser melting and aerodynamic performance measures, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 14644207211035422 (2021).
  • A. Özlek, İnsansız hava araçlarında elektro-optik sistem seçimi için bütünleşik kaba küme tabanlı BWM-COPRAS yaklaşımı, Master’s thesis, Necmettin Erbakan University, Turkey, 2023.
  • G.B.A. Ronconi, T.J. Batista, V. Merola, The utilization of unmanned aerial vehicles (UAV) for military action in foreign airspace, UFRGSMUN: UFRGS Model United Nations Journal 2 (2014) 137–180.
  • M. Peker, B. İnci, E. Musaoğlu, H. Çobanoğlu, N. Kocakır, Ö. Karademir, İnsan sayma sistemi için gömülü cihazlarda derin öğrenme mimarilerinin performans analizi.
  • M. Piras, N. Grasso, A. Abdul Jabbar, UAV photogrammetric solution using a Raspberry Pi camera module and smart devices: Test and results, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42 (2017) 289–296.
  • T. Kara, A. Yönetken, Robot arm design and control with Raspberry Pi.
  • D. Molloy, Exploring Raspberry Pi: Interfacing to the Real World with Embedded Linux, John Wiley & Sons, 2016.
  • N. Djema, Security and home automation based on Raspberry Pi, Arduino Uno and Node MCU.
  • R. Krauss, Real-time Python: Recent advances in the Raspberry Pi plus Arduino real-time control approach, in: 2020 American Control Conference (ACC), IEEE, 2020, pp. 2088–2093.
  • J.Á. Ariza, S.G. Gil, RaspyLab: A low-cost remote laboratory to learn programming and physical computing through Python and Raspberry Pi, IEEE Revista Iberoamericana de Tecnologias del Aprendizaje 17 (2) (2022) 140–149.
  • B. Aksoy, M. Yücel, H. Sayın, N. Aydın, Ö. Ekrem, Hurma meyvesindeki kalite kontrol işlemlerinin yapay zeka ile tahminlenmesi, Gazi Mühendislik Bilimleri Dergisi 9 (4) (2023) 70–81.
  • S. Srigrarom, W.L. Chan, Ornithopter type flapping wings for autonomous micro air vehicles, Aerospace 2 (2) (2015) 235–278.
  • F.G. Bermudez, R. Fearing, Optical flow on a flapping wing robot, in: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2009, pp. 5027–5032.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Optimization Techniques in Mechanical Engineering
Journal Section Research Articles
Authors

Seydi Tutar 0009-0004-4910-4780

Abdulhamit Polat 0009-0004-6956-0791

Murat Öztürk 0009-0005-6646-3459

Davut Kilinç 0009-0009-0496-0256

Koray Özsoy 0000-0001-8663-4466

Publication Date December 31, 2024
Submission Date July 6, 2024
Acceptance Date September 10, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

APA Tutar, S., Polat, A., Öztürk, M., Kilinç, D., et al. (2024). ROBOTİK CASUS KUŞUN TASARIMI, İMALATI VE GÖRÜNTÜ İŞLEME TEKNİKLERİ İLE KONTROLÜ. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi, 8(2), 119-133. https://doi.org/10.62301/usmtd.1511546
AMA Tutar S, Polat A, Öztürk M, Kilinç D, Özsoy K. ROBOTİK CASUS KUŞUN TASARIMI, İMALATI VE GÖRÜNTÜ İŞLEME TEKNİKLERİ İLE KONTROLÜ. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. December 2024;8(2):119-133. doi:10.62301/usmtd.1511546
Chicago Tutar, Seydi, Abdulhamit Polat, Murat Öztürk, Davut Kilinç, and Koray Özsoy. “ROBOTİK CASUS KUŞUN TASARIMI, İMALATI VE GÖRÜNTÜ İŞLEME TEKNİKLERİ İLE KONTROLÜ”. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi 8, no. 2 (December 2024): 119-33. https://doi.org/10.62301/usmtd.1511546.
EndNote Tutar S, Polat A, Öztürk M, Kilinç D, Özsoy K (December 1, 2024) ROBOTİK CASUS KUŞUN TASARIMI, İMALATI VE GÖRÜNTÜ İŞLEME TEKNİKLERİ İLE KONTROLÜ. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 8 2 119–133.
IEEE S. Tutar, A. Polat, M. Öztürk, D. Kilinç, and K. Özsoy, “ROBOTİK CASUS KUŞUN TASARIMI, İMALATI VE GÖRÜNTÜ İŞLEME TEKNİKLERİ İLE KONTROLÜ”, Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, vol. 8, no. 2, pp. 119–133, 2024, doi: 10.62301/usmtd.1511546.
ISNAD Tutar, Seydi et al. “ROBOTİK CASUS KUŞUN TASARIMI, İMALATI VE GÖRÜNTÜ İŞLEME TEKNİKLERİ İLE KONTROLÜ”. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 8/2 (December 2024), 119-133. https://doi.org/10.62301/usmtd.1511546.
JAMA Tutar S, Polat A, Öztürk M, Kilinç D, Özsoy K. ROBOTİK CASUS KUŞUN TASARIMI, İMALATI VE GÖRÜNTÜ İŞLEME TEKNİKLERİ İLE KONTROLÜ. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. 2024;8:119–133.
MLA Tutar, Seydi et al. “ROBOTİK CASUS KUŞUN TASARIMI, İMALATI VE GÖRÜNTÜ İŞLEME TEKNİKLERİ İLE KONTROLÜ”. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi, vol. 8, no. 2, 2024, pp. 119-33, doi:10.62301/usmtd.1511546.
Vancouver Tutar S, Polat A, Öztürk M, Kilinç D, Özsoy K. ROBOTİK CASUS KUŞUN TASARIMI, İMALATI VE GÖRÜNTÜ İŞLEME TEKNİKLERİ İLE KONTROLÜ. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. 2024;8(2):119-33.