Research Article
BibTex RIS Cite

Üç Boyutlu De Sitter Uzayında Dönel Yüzeyler

Year 2025, Volume: 9 Issue: 1, 1 - 13, 27.06.2025
https://doi.org/10.47137/usufedbid.1593502

Abstract

Bu çalışmada, üç boyutlu De Sitter uzayında 𝐾 − flat ve minimal dönel yüzeyleri ve yüzeyin pozisyon
vektörünü kullanacarak laplace operatörünün Δ𝑋 = 0, Δ𝑋 = 𝜆𝑋 ve Δ𝑋 = 𝐴𝑋 eşitliğini sağlayan konformal
ve non konformal yüzeyleri araştırdık.

References

  • Chen B.Y, A report on submanifold of finite type. Soochow J. Math. 1996;(22):117–337.
  • Guler E, Kisi O, The Second Laplace-Beltrami Operator on Rotational Hypersurfaces in the Euclidean 4-Space, Mathematica Aeterna. 2018;8(1):1–12.
  • Yuksel N, Karacan M.K, Classsification of Conformal Surfaces of Revolution in Hyperbolic 3-Space, Facta Universitatis Ser. Math. İnform, 2020;35(2):333-349.
  • Lee S, Spacelike surfaces of constant mean curvature one in de Sitter 3-space. Illinois Journal of Mathematics, 2005;49(1):63–98.
  • Lee S, Zarske K, Surfaces of revolution with constant mean curvature in Hyperbolic 3-space, Differential Geometry- Dynamical Systems (DGDS), 2014;(16):203–218.
  • Lee S, Martin J, Timelike surfaces of revolution with constant mean curvature in de sitter 3-space, International Electronic Journal of Geometry (IEJG), 2015;8(1):116–127.
  • Kaimakamis G, Papantoniou B, Petoumenos K,Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying ∆^III r=Ar, Bull. Greek Math. Soc, 2005;(50):75–90.
  • Takahashi T, Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan, 1996;(18):380–385.
  • Garay O. J, n extension of Takahashi’s theorem. Geom. Dedicata, 1990;(34):105–112.
  • Dillen F, Pas J, Vertraelen L, On the Gauss map of surfaces of revolution, Bull. Inst. Math. Acad. Sinica, 1990;(18):239–246.
  • Bekkar M, Zoubir H, Surfaces of Revolution in the 3-Dimensional Lorentz-Minkowski Space Satisfying ∆x^i=λ^i x^i, Int. J. Contemp. Math. Sciences, 2008;3(24):1173 - 1185.
  • Senoussi B, Bekkar M, Helicoidal surfaces with ∆^j r=Ar in 3-dimensional Euclidean space. Stud. Univ. Babes-Bolyai Math, 2015;60(3):437–448.

Surfaces of Revolution in De Sitter 3-Space

Year 2025, Volume: 9 Issue: 1, 1 - 13, 27.06.2025
https://doi.org/10.47137/usufedbid.1593502

Abstract

In this study, we investigated 𝐾 −flat and minimally surfaces of revolution in three-dimensional De Sitter
space and also we study conformal and non-conformal surfaces that satisfy the equations of the Laplace
operatör Δ𝑋 = 0, Δ𝑋 = 𝜆𝑋 ve Δ𝑋 = 𝐴𝑋 by using the position vector of the surface.

References

  • Chen B.Y, A report on submanifold of finite type. Soochow J. Math. 1996;(22):117–337.
  • Guler E, Kisi O, The Second Laplace-Beltrami Operator on Rotational Hypersurfaces in the Euclidean 4-Space, Mathematica Aeterna. 2018;8(1):1–12.
  • Yuksel N, Karacan M.K, Classsification of Conformal Surfaces of Revolution in Hyperbolic 3-Space, Facta Universitatis Ser. Math. İnform, 2020;35(2):333-349.
  • Lee S, Spacelike surfaces of constant mean curvature one in de Sitter 3-space. Illinois Journal of Mathematics, 2005;49(1):63–98.
  • Lee S, Zarske K, Surfaces of revolution with constant mean curvature in Hyperbolic 3-space, Differential Geometry- Dynamical Systems (DGDS), 2014;(16):203–218.
  • Lee S, Martin J, Timelike surfaces of revolution with constant mean curvature in de sitter 3-space, International Electronic Journal of Geometry (IEJG), 2015;8(1):116–127.
  • Kaimakamis G, Papantoniou B, Petoumenos K,Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying ∆^III r=Ar, Bull. Greek Math. Soc, 2005;(50):75–90.
  • Takahashi T, Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan, 1996;(18):380–385.
  • Garay O. J, n extension of Takahashi’s theorem. Geom. Dedicata, 1990;(34):105–112.
  • Dillen F, Pas J, Vertraelen L, On the Gauss map of surfaces of revolution, Bull. Inst. Math. Acad. Sinica, 1990;(18):239–246.
  • Bekkar M, Zoubir H, Surfaces of Revolution in the 3-Dimensional Lorentz-Minkowski Space Satisfying ∆x^i=λ^i x^i, Int. J. Contemp. Math. Sciences, 2008;3(24):1173 - 1185.
  • Senoussi B, Bekkar M, Helicoidal surfaces with ∆^j r=Ar in 3-dimensional Euclidean space. Stud. Univ. Babes-Bolyai Math, 2015;60(3):437–448.
There are 12 citations in total.

Details

Primary Language Turkish
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Ali İhsan Yilmaz 0009-0002-3503-4801

Murat Kemal Karacan 0000-0002-2832-9444

Yılmaz Tunçer 0000-0002-2398-866X

Publication Date June 27, 2025
Submission Date November 29, 2024
Acceptance Date January 13, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Yilmaz, A. İ., Karacan, M. K., & Tunçer, Y. (2025). Üç Boyutlu De Sitter Uzayında Dönel Yüzeyler. Uşak Üniversitesi Fen Ve Doğa Bilimleri Dergisi, 9(1), 1-13. https://doi.org/10.47137/usufedbid.1593502
AMA Yilmaz Aİ, Karacan MK, Tunçer Y. Üç Boyutlu De Sitter Uzayında Dönel Yüzeyler. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi. June 2025;9(1):1-13. doi:10.47137/usufedbid.1593502
Chicago Yilmaz, Ali İhsan, Murat Kemal Karacan, and Yılmaz Tunçer. “Üç Boyutlu De Sitter Uzayında Dönel Yüzeyler”. Uşak Üniversitesi Fen Ve Doğa Bilimleri Dergisi 9, no. 1 (June 2025): 1-13. https://doi.org/10.47137/usufedbid.1593502.
EndNote Yilmaz Aİ, Karacan MK, Tunçer Y (June 1, 2025) Üç Boyutlu De Sitter Uzayında Dönel Yüzeyler. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi 9 1 1–13.
IEEE A. İ. Yilmaz, M. K. Karacan, and Y. Tunçer, “Üç Boyutlu De Sitter Uzayında Dönel Yüzeyler”, Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi, vol. 9, no. 1, pp. 1–13, 2025, doi: 10.47137/usufedbid.1593502.
ISNAD Yilmaz, Ali İhsan et al. “Üç Boyutlu De Sitter Uzayında Dönel Yüzeyler”. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi 9/1 (June2025), 1-13. https://doi.org/10.47137/usufedbid.1593502.
JAMA Yilmaz Aİ, Karacan MK, Tunçer Y. Üç Boyutlu De Sitter Uzayında Dönel Yüzeyler. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi. 2025;9:1–13.
MLA Yilmaz, Ali İhsan et al. “Üç Boyutlu De Sitter Uzayında Dönel Yüzeyler”. Uşak Üniversitesi Fen Ve Doğa Bilimleri Dergisi, vol. 9, no. 1, 2025, pp. 1-13, doi:10.47137/usufedbid.1593502.
Vancouver Yilmaz Aİ, Karacan MK, Tunçer Y. Üç Boyutlu De Sitter Uzayında Dönel Yüzeyler. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi. 2025;9(1):1-13.