Üç Boyutlu De Sitter Uzayında Dönel Yüzeyler
Year 2025,
Volume: 9 Issue: 1, 1 - 13, 27.06.2025
Ali İhsan Yilmaz
,
Murat Kemal Karacan
,
Yılmaz Tunçer
Abstract
Bu çalışmada, üç boyutlu De Sitter uzayında 𝐾 − flat ve minimal dönel yüzeyleri ve yüzeyin pozisyon
vektörünü kullanacarak laplace operatörünün Δ𝑋 = 0, Δ𝑋 = 𝜆𝑋 ve Δ𝑋 = 𝐴𝑋 eşitliğini sağlayan konformal
ve non konformal yüzeyleri araştırdık.
References
-
Chen B.Y, A report on submanifold of finite type. Soochow J. Math. 1996;(22):117–337.
-
Guler E, Kisi O, The Second Laplace-Beltrami Operator on Rotational Hypersurfaces in the Euclidean 4-Space, Mathematica Aeterna. 2018;8(1):1–12.
-
Yuksel N, Karacan M.K, Classsification of Conformal Surfaces of Revolution in Hyperbolic 3-Space, Facta Universitatis Ser. Math. İnform, 2020;35(2):333-349.
-
Lee S, Spacelike surfaces of constant mean curvature one in de Sitter 3-space. Illinois Journal of Mathematics, 2005;49(1):63–98.
-
Lee S, Zarske K, Surfaces of revolution with constant mean curvature in Hyperbolic 3-space, Differential Geometry- Dynamical Systems (DGDS), 2014;(16):203–218.
-
Lee S, Martin J, Timelike surfaces of revolution with constant mean curvature in de sitter 3-space, International Electronic Journal of Geometry (IEJG), 2015;8(1):116–127.
-
Kaimakamis G, Papantoniou B, Petoumenos K,Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying ∆^III r=Ar, Bull. Greek Math. Soc, 2005;(50):75–90.
-
Takahashi T, Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan, 1996;(18):380–385.
-
Garay O. J, n extension of Takahashi’s theorem. Geom. Dedicata, 1990;(34):105–112.
-
Dillen F, Pas J, Vertraelen L, On the Gauss map of surfaces of revolution, Bull. Inst. Math. Acad. Sinica, 1990;(18):239–246.
-
Bekkar M, Zoubir H, Surfaces of Revolution in the 3-Dimensional Lorentz-Minkowski Space Satisfying ∆x^i=λ^i x^i, Int. J. Contemp. Math. Sciences, 2008;3(24):1173 - 1185.
-
Senoussi B, Bekkar M, Helicoidal surfaces with ∆^j r=Ar in 3-dimensional Euclidean space. Stud. Univ. Babes-Bolyai Math, 2015;60(3):437–448.
Surfaces of Revolution in De Sitter 3-Space
Year 2025,
Volume: 9 Issue: 1, 1 - 13, 27.06.2025
Ali İhsan Yilmaz
,
Murat Kemal Karacan
,
Yılmaz Tunçer
Abstract
In this study, we investigated 𝐾 −flat and minimally surfaces of revolution in three-dimensional De Sitter
space and also we study conformal and non-conformal surfaces that satisfy the equations of the Laplace
operatör Δ𝑋 = 0, Δ𝑋 = 𝜆𝑋 ve Δ𝑋 = 𝐴𝑋 by using the position vector of the surface.
References
-
Chen B.Y, A report on submanifold of finite type. Soochow J. Math. 1996;(22):117–337.
-
Guler E, Kisi O, The Second Laplace-Beltrami Operator on Rotational Hypersurfaces in the Euclidean 4-Space, Mathematica Aeterna. 2018;8(1):1–12.
-
Yuksel N, Karacan M.K, Classsification of Conformal Surfaces of Revolution in Hyperbolic 3-Space, Facta Universitatis Ser. Math. İnform, 2020;35(2):333-349.
-
Lee S, Spacelike surfaces of constant mean curvature one in de Sitter 3-space. Illinois Journal of Mathematics, 2005;49(1):63–98.
-
Lee S, Zarske K, Surfaces of revolution with constant mean curvature in Hyperbolic 3-space, Differential Geometry- Dynamical Systems (DGDS), 2014;(16):203–218.
-
Lee S, Martin J, Timelike surfaces of revolution with constant mean curvature in de sitter 3-space, International Electronic Journal of Geometry (IEJG), 2015;8(1):116–127.
-
Kaimakamis G, Papantoniou B, Petoumenos K,Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying ∆^III r=Ar, Bull. Greek Math. Soc, 2005;(50):75–90.
-
Takahashi T, Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan, 1996;(18):380–385.
-
Garay O. J, n extension of Takahashi’s theorem. Geom. Dedicata, 1990;(34):105–112.
-
Dillen F, Pas J, Vertraelen L, On the Gauss map of surfaces of revolution, Bull. Inst. Math. Acad. Sinica, 1990;(18):239–246.
-
Bekkar M, Zoubir H, Surfaces of Revolution in the 3-Dimensional Lorentz-Minkowski Space Satisfying ∆x^i=λ^i x^i, Int. J. Contemp. Math. Sciences, 2008;3(24):1173 - 1185.
-
Senoussi B, Bekkar M, Helicoidal surfaces with ∆^j r=Ar in 3-dimensional Euclidean space. Stud. Univ. Babes-Bolyai Math, 2015;60(3):437–448.