Research Article
BibTex RIS Cite

Güneş Enerjisi Kaynaklı Farklı Transkritik CO2 Rankine Çevrimlerinin Karşılaştırılması

Year 2022, , 94 - 102, 30.11.2022
https://doi.org/10.55974/utbd.1169460

Abstract

Bu çalışmada, vakum tüplü güneş kollektörlü farklı transkritik CO2 Rankine çevrimleri incelenmiştir. Bu kapsamda literatürde yaygın olarak kullanılan basit, rejeneratör, yeniden ısıtmalı, rejeneratör ve yeniden ısıtmalı transkritik CO2 Rankine çevrimleri seçilmiştir. İlk olarak, belirli çalışma parametreleri altında dört farklı transkritik CO2 Rankine çevriminin termodinamik analizleri yapılarak sistemlerin enerji ve ekserji verimleri hesaplanmıştır. Ayrıca türbin giriş sıcaklığı ve türbin giriş basıncı gibi sistem performansını etkileyen faktörlere göre parametrik çalışmalar yapılmıştır. Hem analizler hem de parametrik çalışmalar EES bilgisayar programı kullanılarak yapılmıştır. Termodinamik analizler sonucunda en yüksek enerji verimi % 11.8 ile yeniden ısıtmalı ve rejeneratörlü transkritik CO2 Rankine çevrimi için, en düşük enerji verimi ise % 6.6 ile basit transkritik CO2 Rankine çevrimi ve yeniden ısıtmalı transkritik CO2 Rankine çevrimi için hesaplanmıştır. Tüm transkritik CO2 Rankine çevrimlerinin enerji ve ekserji verimleri türbin giriş basıncının artmasıyla artarken, tüm transkritik CO2 Rankine çevrimlerinin enerji ve ekserji verimi pompa giriş basıncının artmasıyla azalmıştır.

References

  • [1] Forman C, Muritala IK., Pardemann R, Meyer B. Estimating the Global Waste Heat Potential. Renewable and Sustainable Energy Reviews, 57, 1568-1579, 2016.
  • [2] Qin J, Hu E, Li X. Solar Aided Power Generation: A Review. Energy and Built Environment, 1, 11-26, 2020.
  • [3] Li L, Ge YT, Luo X, Tassou SA. Design and Dynamic Investigation of Low-Grade Power Generation Systems with CO2 Transcritical Power Cycles and R245fa Organic Rankine Cycles. Thermal Science and Engineering Progress, 8, 211-222, 2018.
  • [4] Shu G, Shi L, Tian H, Deng S, Li X, Chang L. Configurations Selection Maps of CO2-Based Transcritical Rankine Cycle (CTRC) for Thermal Energy Management of Engine Waste Heat. Applied Energy, 186, 423-435, 2017.
  • [5] Saleh B, Koglbauer G, Wendland M, Fischer J. Working Fluids for Low Temperature Organic Rankine Cycles. Energy, 32(7), 1210–1221, 2007.
  • [6] Song J, Li XS, Ren XD, Gu CW. Performance Improvement of a Preheating Supercritical CO2 (S-CO2) Cycle Based System for Engine Waste Heat Recovery. Energy Conversion and Management, 161, 225-233, 2018.
  • [7] Zhang XR, Yamaguchi H, Uneno D. Experimental Study on The Performance of Solar Rankine System Using Supercritical CO2. Renewable Energy, 32, 2617–2628, 2007.
  • [8] AlZahrani AA, Dincer I, Naterer GF. Performance Evaluation of a Geothermal Based Integrated System for Power, Hydrogen and Heat Generation. International Journal of Hydrogen Energy, 38, 14505-1451, 2013.
  • [9] Bamisile O, Mukhtar M, Yimen N, Huang Q, Olotu O, Adebayo V, Dagabsi M. Comparative Performance Analysis of Solar Powered Supercritical-Transcritical CO2 Based Systems for Hydrogen Production and Multigeneration. International Journal of Hydrogen Energy, 46, 26272-26288, 2021.
  • [10] Cayer E, Galanis N, Desilets M, Nesreddine H, Roy P. Analysis of a Carbon Dioxide Transcritical Power Cycle Using a Low Temperature Source. Applied Energy, 86, 1055-1063, 2009.
  • [11] Pan L, Li B, Wei X, Li T. Experimental Investigation on the CO2 Transcritical Power Cycle. Energy, 95, 247-254, 2016.
  • [12] Shu G, Shi L, Tian H, Li X, Huang G, Chang L. An improved CO2-Based Transcritical Rankine Cycle (CTRC) Used for Engine Waste Heat Recovery. Applied Energy, 176, 171-182, 2016.
  • [13] Yamaguchi H, Yamasaki H, Kizilkan O. Experimental investigation of Solar‐Assisted Transcritical CO2 Rankine Cycle for Summer and Winter Conditions from Exergetic Point of View. International Journal of Energy Research, 44, 1089-1102, 2020.
  • [14] Sarmiento C, Cardemil JM, Díaz AJ, Barraza R. Parametrized Analysis of a Carbon Dioxide Transcritical Rankine Cycle Driven by Solar Energy. Applied Thermal Engineering, 140, 580‐592, 2018.
  • [15] AlZahrani AA, Dincer I. Thermodynamic Analysis of an Integrated Transcritical Carbon Dioxide Power Cycle for Concentrated Solar Power Systems. Solar Energy, 170, 557-567, 2018.
  • [16] Kizilkan O, Khanmohammadi S, Yamaguchi H. Two-objective Optimization of a Transcritical Carbon Dioxide-Based Rankine Cycle Integrated with Evacuated Tube Solar Collector for Power and Heat Generation. Applied Thermal Engineering, 182, 116079, 2021.
  • [17] Liang W, Yu Z, Bai S, Li G, Wang D. Study on a Near-zero Emission SOFC-based Multi-Generation System Combined with Organic Rankine Cycle and Transcritical CO2 Cycle for LNG Cold Energy Recovery. Energy Conversion and Management, 253, 115188, 2022.
  • [18] Akbari N. Introducing And 3E (Energy, Exergy, Economic) Analysis of an Integrated Transcritical CO2 Rankine Cycle, Stirling Power Cycle and LNG Regasification Process. Applied Thermal Engineering, 140, 442-454, 2018.
  • [19] Naseri A, Bidi M, Ahmadi MH. Thermodynamic and Exergy Analysis of a Hydrogen and Permeate Water Production Process by a Solar‐Driven Transcritical CO2 Power Cycle with Liquefied Natural Gas Heat Sink. Renewable Energy, 113,1215‐1228, 2017.
  • [20] Meng F, Wang E, Zhang B, Zhang F, Zhao C. Thermo-economic Analysis of Transcritical CO2 Power Cycle and Comparison with Kalina Cycle and ORC for a Low-Temperature Heat Source. Energy Conversion and Management, 195, 1295-1308, 2019.
  • [21] Shi L, Shu G, Tian H, Huang G, Chen T, Li X, Li D. Experimental Comparison Between Four CO2-Based Transcritical Rankine Cycle (CTRC) Systems for Engine Waste Heat Recovery. Energy Conversion and Management, 150, 159-171, 2017.
  • [22] Padilla RV, Soo Too YC, Benito R, Stein W. Exergetic Analysis of Supercritical CO2 Brayton Cycles Integrated with Solar Central Receivers. Applied Energy, 148, 348–365, 2015.
  • [23] Conboy T, Wright S, Pasch J, Fleming D, Rochau G, Fuller R. Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle. Journal Engineering Gas Turbines and Power, 134, 111703, 2012.
  • [24] Klein, SA. Engineering Equation Solver (EES). F-Chart, 2022.
  • [25] Kalogirou SA. Solar Energy Engineering: Processes and Systems. 2nd Edition. Elsevier, 2013.
  • [26] Celik Toker S. Kizilkan O, Yamaguchi H. Transient thermal modelling of evacuated u-tube solar collectors: a case study for carbon-dioxide. 19 th International Conference on Sustainable Energy Technologies (SET-2022), Istanbul, August 16-18, 2022.
  • [27] Cengel YA, Boles MA. Thermodynamics: An Engineering Approach. 8th Edition. 2015.
  • [28] Dincer I, Rosen MA. Exergy: Energy, Environment and Sustainable Development.2013.

Comparative Assessment of Solar Energy Based Transcritical CO2 Rankine Cycles for Different Layouts

Year 2022, , 94 - 102, 30.11.2022
https://doi.org/10.55974/utbd.1169460

Abstract

In this study, different transcritical CO2 Rankine (tCO2-RC) cycles with vacuum tube solar collectors are examined. In this context, the transcritical CO2 Rankine cycle in different configurations, such as simple, regenerator, reheat, regenerator, and reheat, which is widely used in the literature, has been chosen. First, the energy and exergy efficiencies of the cycles were founded by performing thermodynamic analyzes of four various tCO2-RCs under certain operating parameters. Moreover, parametric studies were carried out according to the factors affecting the system performance, like turbine input temperature and input pressure of the turbine. Both analyzes and parametric studies were conducted utilizing the Engineering Equation Solver (EES) computer program. As outcomes of analyzes, the highest thermal efficiency was founded for the tCO2-RC with reheat and regenerator by 11.8%, and the lowest energy efficiency was calculated for the simple tCO2-RC and tCO2-RC with reheat by approximately 6.6%. While all tCO2-RCs' energy and exergy efficiencies increased with the rise of the turbine’s input pressure, the energy and exergy efficiency of all tCO2-RCs decreased with the rise of the pump’s input pressure.

References

  • [1] Forman C, Muritala IK., Pardemann R, Meyer B. Estimating the Global Waste Heat Potential. Renewable and Sustainable Energy Reviews, 57, 1568-1579, 2016.
  • [2] Qin J, Hu E, Li X. Solar Aided Power Generation: A Review. Energy and Built Environment, 1, 11-26, 2020.
  • [3] Li L, Ge YT, Luo X, Tassou SA. Design and Dynamic Investigation of Low-Grade Power Generation Systems with CO2 Transcritical Power Cycles and R245fa Organic Rankine Cycles. Thermal Science and Engineering Progress, 8, 211-222, 2018.
  • [4] Shu G, Shi L, Tian H, Deng S, Li X, Chang L. Configurations Selection Maps of CO2-Based Transcritical Rankine Cycle (CTRC) for Thermal Energy Management of Engine Waste Heat. Applied Energy, 186, 423-435, 2017.
  • [5] Saleh B, Koglbauer G, Wendland M, Fischer J. Working Fluids for Low Temperature Organic Rankine Cycles. Energy, 32(7), 1210–1221, 2007.
  • [6] Song J, Li XS, Ren XD, Gu CW. Performance Improvement of a Preheating Supercritical CO2 (S-CO2) Cycle Based System for Engine Waste Heat Recovery. Energy Conversion and Management, 161, 225-233, 2018.
  • [7] Zhang XR, Yamaguchi H, Uneno D. Experimental Study on The Performance of Solar Rankine System Using Supercritical CO2. Renewable Energy, 32, 2617–2628, 2007.
  • [8] AlZahrani AA, Dincer I, Naterer GF. Performance Evaluation of a Geothermal Based Integrated System for Power, Hydrogen and Heat Generation. International Journal of Hydrogen Energy, 38, 14505-1451, 2013.
  • [9] Bamisile O, Mukhtar M, Yimen N, Huang Q, Olotu O, Adebayo V, Dagabsi M. Comparative Performance Analysis of Solar Powered Supercritical-Transcritical CO2 Based Systems for Hydrogen Production and Multigeneration. International Journal of Hydrogen Energy, 46, 26272-26288, 2021.
  • [10] Cayer E, Galanis N, Desilets M, Nesreddine H, Roy P. Analysis of a Carbon Dioxide Transcritical Power Cycle Using a Low Temperature Source. Applied Energy, 86, 1055-1063, 2009.
  • [11] Pan L, Li B, Wei X, Li T. Experimental Investigation on the CO2 Transcritical Power Cycle. Energy, 95, 247-254, 2016.
  • [12] Shu G, Shi L, Tian H, Li X, Huang G, Chang L. An improved CO2-Based Transcritical Rankine Cycle (CTRC) Used for Engine Waste Heat Recovery. Applied Energy, 176, 171-182, 2016.
  • [13] Yamaguchi H, Yamasaki H, Kizilkan O. Experimental investigation of Solar‐Assisted Transcritical CO2 Rankine Cycle for Summer and Winter Conditions from Exergetic Point of View. International Journal of Energy Research, 44, 1089-1102, 2020.
  • [14] Sarmiento C, Cardemil JM, Díaz AJ, Barraza R. Parametrized Analysis of a Carbon Dioxide Transcritical Rankine Cycle Driven by Solar Energy. Applied Thermal Engineering, 140, 580‐592, 2018.
  • [15] AlZahrani AA, Dincer I. Thermodynamic Analysis of an Integrated Transcritical Carbon Dioxide Power Cycle for Concentrated Solar Power Systems. Solar Energy, 170, 557-567, 2018.
  • [16] Kizilkan O, Khanmohammadi S, Yamaguchi H. Two-objective Optimization of a Transcritical Carbon Dioxide-Based Rankine Cycle Integrated with Evacuated Tube Solar Collector for Power and Heat Generation. Applied Thermal Engineering, 182, 116079, 2021.
  • [17] Liang W, Yu Z, Bai S, Li G, Wang D. Study on a Near-zero Emission SOFC-based Multi-Generation System Combined with Organic Rankine Cycle and Transcritical CO2 Cycle for LNG Cold Energy Recovery. Energy Conversion and Management, 253, 115188, 2022.
  • [18] Akbari N. Introducing And 3E (Energy, Exergy, Economic) Analysis of an Integrated Transcritical CO2 Rankine Cycle, Stirling Power Cycle and LNG Regasification Process. Applied Thermal Engineering, 140, 442-454, 2018.
  • [19] Naseri A, Bidi M, Ahmadi MH. Thermodynamic and Exergy Analysis of a Hydrogen and Permeate Water Production Process by a Solar‐Driven Transcritical CO2 Power Cycle with Liquefied Natural Gas Heat Sink. Renewable Energy, 113,1215‐1228, 2017.
  • [20] Meng F, Wang E, Zhang B, Zhang F, Zhao C. Thermo-economic Analysis of Transcritical CO2 Power Cycle and Comparison with Kalina Cycle and ORC for a Low-Temperature Heat Source. Energy Conversion and Management, 195, 1295-1308, 2019.
  • [21] Shi L, Shu G, Tian H, Huang G, Chen T, Li X, Li D. Experimental Comparison Between Four CO2-Based Transcritical Rankine Cycle (CTRC) Systems for Engine Waste Heat Recovery. Energy Conversion and Management, 150, 159-171, 2017.
  • [22] Padilla RV, Soo Too YC, Benito R, Stein W. Exergetic Analysis of Supercritical CO2 Brayton Cycles Integrated with Solar Central Receivers. Applied Energy, 148, 348–365, 2015.
  • [23] Conboy T, Wright S, Pasch J, Fleming D, Rochau G, Fuller R. Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle. Journal Engineering Gas Turbines and Power, 134, 111703, 2012.
  • [24] Klein, SA. Engineering Equation Solver (EES). F-Chart, 2022.
  • [25] Kalogirou SA. Solar Energy Engineering: Processes and Systems. 2nd Edition. Elsevier, 2013.
  • [26] Celik Toker S. Kizilkan O, Yamaguchi H. Transient thermal modelling of evacuated u-tube solar collectors: a case study for carbon-dioxide. 19 th International Conference on Sustainable Energy Technologies (SET-2022), Istanbul, August 16-18, 2022.
  • [27] Cengel YA, Boles MA. Thermodynamics: An Engineering Approach. 8th Edition. 2015.
  • [28] Dincer I, Rosen MA. Exergy: Energy, Environment and Sustainable Development.2013.
There are 28 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Articles
Authors

Serpil Çelik Toker 0000-0003-3572-7907

Önder Kızılkan 0000-0002-4865-6135

Publication Date November 30, 2022
Published in Issue Year 2022

Cite

IEEE S. Çelik Toker and Ö. Kızılkan, “Comparative Assessment of Solar Energy Based Transcritical CO2 Rankine Cycles for Different Layouts”, UTBD, vol. 14, no. 2, pp. 94–102, 2022, doi: 10.55974/utbd.1169460.

Dergi isminin Türkçe kısaltması "UTBD" ingilizce kısaltması "IJTS" şeklindedir.

Dergimizde yayınlanan makalelerin tüm bilimsel sorumluluğu yazar(lar)a aittir. Editör, yardımcı editör ve yayıncı dergide yayınlanan yazılar için herhangi bir sorumluluk kabul etmez.