BibTex RIS Cite

KENAR GEÇİŞLERİ KULLANILARAK GÖRÜNTÜDEKİ BULANIKLIĞIN GİDERİLMESİ

Year 2016, Volume: 8 Issue: 2, 28 - 36, 01.06.2016

Abstract

Görüntü işleme alanında en büyük problemlerinden biri olan bulanıklığının giderilmesi için bir yöntem önerilmiştir. Bulanıklık kenarların net olmaması, renk geçişlerinin çok yumuşak olması olarak ifade edilebilir. Bu çalışmada, odak bulanıklığı (out-of-focus) için kenar geçişleri kullanılarak bir filtreleme işlemi gerçekleştirilmiştir. Bulanık görüntüden yola çıkarak görüntüdeki bulanık geçişlerden daha keskin bir geçiş elde edebilmek için satır, sütun ve çapraz piksel değerleri kullanılmıştır. Görüntü üzerindeki piksel değerleri satır, sütun, çapraz piksellerin farkları kullanılarak yeniden hesaplanmıştır. Görüntününorijinalliğini bozmadan daha keskin geçişler elde edilmeye çalışılmıştır. Önerilen yöntemin başarisini karşılaştırmak için ortalama, ortanca, wiener ve keskinleştirme filtreleri kullanılmıştır. Karşılaştırma parametreleri olarak görüntü kalitesini ölçen metotlar kullanılmıştır. Bu karşılaştırmalara göre en iyi sonucu önerilen metot vermiştir.

References

  • Bagbaba, A. C., Ors, B., & Erozan, A. T. (2014). Image Filtering Processor and Its Applications. In Signal Processing and Communications Applications Conference (SIU), 2011-2014.
  • Buades, A., Coll, B., & Morel, J. M. (2010). Image Denoising Methods. A new nonlocal principle. SIAM review, 52(1), 113-147.
  • Duran, N., Catak, M., & Ozbek, M. E. (2013). Image Enhancement using Fuzzy C-Means Clustering Based on Local Population Balance Modeling. InSignal Processing and Communications Applications Conference (SIU), 1-4.
  • Erdem, M. C., Telatar, Z., & Dogan, M. (2013). Image Restoration by Adaptive Wavelet Thresholding Method. Signal Processing and Communications Applications Conference (SIU).
  • Gonzalez, R. C. and Woods, R. E.(2007). Digital Image Processing. Prentice Hall, 3rd edition.
  • Illig, D. W., & Liu, C. (2013). Two-Dimensional Convolution on the SCC. Many-Core Architecture Research Community Symposium.
  • İpek, İ.(2012). Bulanık Görüntülerin Yapay Sinir Ağları İle Onarılması, Yüksek Lisans Tezi, Elektronik Ve Haberleşme Mühendisliği Anabilim Dalı.
  • Jawas, N., & Suciati, N. (2013). Image Inpainting using Erosion and Dilation Operation. International Journal of Advanced Science and Technology, 51, 127-134.
  • Kaveh, N. S., Ashrafizadeh, S.N., Mohammadi, F. (2008). Development of an Artificial Neural Network Model for Prediction of Cell Voltage and Current Efficiency in A Chlor-Alkali Membrane Cell‖. Chemical Engineering Research and Design, 86(5), 461 - 472.
  • İnce, K.(2012).Dalgacık Dönüşümü Kullanılarak Uydu Ve Hava Görüntülerinin Gürültüden Arındırılması Üzerine Bir Uygulama. Yüksek Lisans Tezi, Hava Harp Okulu Havacılık Ve Uzay Teknolojileri Enstitüsü.
  • Lal, S., & Kumar, R. (2013). Enhancement of Hyperspectral Real World Images using Hybrid Domain Approach. International Journal of Image, Graphics and Signal Processing, 5(5), 29.
  • Nabİyev, V. V., Tasçi, A., & Ulutas, M. (2011). Removing Unwanted Objects froman Image. In Signal Processing and Communications Applications (SIU), IEEE 19th Conference, 9-12.
  • Nasri, M., & Nezamabadi-pour, H. (2009). Image Denoising in The Wavelet Domain using A New Adaptive Thresholding Function. Neurocomputing, 72(4), 1012-1025.
  • Özkan, K., & Seke, E. (2010). Image Deblurring Based on Maximization of Edginess. In Electrical, Electronics and Computer Engineering (ELECO) National Conference, 634-637.
  • Tasdizen, T. (2009). Principal Neighborhood Dictionaries for Nonlocal Means Image Denoising. Image Processing, IEEE Transactions on, 18(12), 2649-2660.
  • Wang, J., Lu, K., Pan, D., He, N., & Bao, B. K. (2014). Robust Object Removal with an Exemplar-Based Image Inpainting Approach. Neurocomputing, 123, 150-155.
  • Wang, Z., & Bovik, A. C. (2002). A Universal Image Quality Index. Signal Processing Letters, IEEE, 9(3), 81-84.
  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image Quality Assessment: From Error Visibility to Structural Similarity. Image Processing, IEEE Transactions on, 13(4), 600-612.

IMAGE DE-BLURRING BASED ON EDGE TRANSITIONS

Year 2016, Volume: 8 Issue: 2, 28 - 36, 01.06.2016

Abstract

In this study, a method is proposed to eliminate blurring which one of the biggest problems in image processing. The blurring can be expressed as being very soft color transitions and the lack of clear edge. In this study, a filtering process was performed using the edge transitions for out-of-focus. The row, column and cross-pixel values were used in order to obtain a sharper transition from blur transition in the image based on the blur image. The pixel values on image were re-calculated using the difference of rows, columns, cross-pixels. Sharper transitions are trying to achieve without distorting the originality of the image. The method is compared with mean, median, wiener, sharpening filters which are widely used in image processing research. Image quality metrics were used to as comparison parameters. The proposed method gave the best results according to these comparisons.

References

  • Bagbaba, A. C., Ors, B., & Erozan, A. T. (2014). Image Filtering Processor and Its Applications. In Signal Processing and Communications Applications Conference (SIU), 2011-2014.
  • Buades, A., Coll, B., & Morel, J. M. (2010). Image Denoising Methods. A new nonlocal principle. SIAM review, 52(1), 113-147.
  • Duran, N., Catak, M., & Ozbek, M. E. (2013). Image Enhancement using Fuzzy C-Means Clustering Based on Local Population Balance Modeling. InSignal Processing and Communications Applications Conference (SIU), 1-4.
  • Erdem, M. C., Telatar, Z., & Dogan, M. (2013). Image Restoration by Adaptive Wavelet Thresholding Method. Signal Processing and Communications Applications Conference (SIU).
  • Gonzalez, R. C. and Woods, R. E.(2007). Digital Image Processing. Prentice Hall, 3rd edition.
  • Illig, D. W., & Liu, C. (2013). Two-Dimensional Convolution on the SCC. Many-Core Architecture Research Community Symposium.
  • İpek, İ.(2012). Bulanık Görüntülerin Yapay Sinir Ağları İle Onarılması, Yüksek Lisans Tezi, Elektronik Ve Haberleşme Mühendisliği Anabilim Dalı.
  • Jawas, N., & Suciati, N. (2013). Image Inpainting using Erosion and Dilation Operation. International Journal of Advanced Science and Technology, 51, 127-134.
  • Kaveh, N. S., Ashrafizadeh, S.N., Mohammadi, F. (2008). Development of an Artificial Neural Network Model for Prediction of Cell Voltage and Current Efficiency in A Chlor-Alkali Membrane Cell‖. Chemical Engineering Research and Design, 86(5), 461 - 472.
  • İnce, K.(2012).Dalgacık Dönüşümü Kullanılarak Uydu Ve Hava Görüntülerinin Gürültüden Arındırılması Üzerine Bir Uygulama. Yüksek Lisans Tezi, Hava Harp Okulu Havacılık Ve Uzay Teknolojileri Enstitüsü.
  • Lal, S., & Kumar, R. (2013). Enhancement of Hyperspectral Real World Images using Hybrid Domain Approach. International Journal of Image, Graphics and Signal Processing, 5(5), 29.
  • Nabİyev, V. V., Tasçi, A., & Ulutas, M. (2011). Removing Unwanted Objects froman Image. In Signal Processing and Communications Applications (SIU), IEEE 19th Conference, 9-12.
  • Nasri, M., & Nezamabadi-pour, H. (2009). Image Denoising in The Wavelet Domain using A New Adaptive Thresholding Function. Neurocomputing, 72(4), 1012-1025.
  • Özkan, K., & Seke, E. (2010). Image Deblurring Based on Maximization of Edginess. In Electrical, Electronics and Computer Engineering (ELECO) National Conference, 634-637.
  • Tasdizen, T. (2009). Principal Neighborhood Dictionaries for Nonlocal Means Image Denoising. Image Processing, IEEE Transactions on, 18(12), 2649-2660.
  • Wang, J., Lu, K., Pan, D., He, N., & Bao, B. K. (2014). Robust Object Removal with an Exemplar-Based Image Inpainting Approach. Neurocomputing, 123, 150-155.
  • Wang, Z., & Bovik, A. C. (2002). A Universal Image Quality Index. Signal Processing Letters, IEEE, 9(3), 81-84.
  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image Quality Assessment: From Error Visibility to Structural Similarity. Image Processing, IEEE Transactions on, 13(4), 600-612.
There are 18 citations in total.

Details

Other ID JA54PG76HA
Journal Section Articles
Authors

Halime Boztoprak This is me

Publication Date June 1, 2016
Published in Issue Year 2016 Volume: 8 Issue: 2

Cite

IEEE H. Boztoprak, “KENAR GEÇİŞLERİ KULLANILARAK GÖRÜNTÜDEKİ BULANIKLIĞIN GİDERİLMESİ”, UTBD, vol. 8, no. 2, pp. 28–36, 2016.

Dergi isminin Türkçe kısaltması "UTBD" ingilizce kısaltması "IJTS" şeklindedir.

Dergimizde yayınlanan makalelerin tüm bilimsel sorumluluğu yazar(lar)a aittir. Editör, yardımcı editör ve yayıncı dergide yayınlanan yazılar için herhangi bir sorumluluk kabul etmez.