Research Article
BibTex RIS Cite

ISI AKIŞ ÖLÇER VE GEÇİCİ DÜZLEM KAYNAK TEKNİĞİ İLE KLASİK YALITIM MALZEMELERİNİN ISIL İLETKENLİK KATSAYILARININ BELİRLENMESİ

Year 2018, Volume: 10 Issue: 1, 1 - 18, 05.06.2018

Abstract

Günümüzde evsel ve endüstriyel binaların yalıtımı, enerji tasarrufu, verimlilik, konfor şartları ve sera gazı
emisyonlarının azaltılması açısından son derece önemlidir. Ülkemizde yıl boyunca değişen iklim şartlarına bağlı
bina ısıl yüklerinin belirlenmesi ve gerekli ısı yalıtımının yapılması enerjinin etkin kullanımı açısından
gereklidir. Bu durum enerjinin verimli kullanılmasına yönelik çalışmaların yapılmasını sağlamaktadır. Özellikle
düşük enerji tüketen yapılar için yoğun araştırma faaliyetleri başlatılmış ve ısı yalıtımı standartlar ile zorunlu
hale getirilmiştir. Bina duvar ve çatılarının tasarımında kullanılan ısıl direnç (R) değerlerinin hesabı güçlü bir
şekilde yalıtım malzemelerinin ısıl iletkenlik katsayısına k (W/mK) bağlıdır. Bununla birlikte yalıtım
malzemesinin diğer ısıl özelliklerinin (ısıl yayınım, özgül ısı) belirlenmesi de son derece gereklidir. Bu
çalışmada klasik yalıtım malzemelerinin ısıl iletkenlik katsayıları, iki faklı yöntem ile belirlenmiştir. Öncelikle
ISO 8301 standardına uygun ölçüm yapabilen ısı akış ölçer cihazıyla ısıl iletkenlikler belirlenmiştir. Daha sonra
ise aynı numuneler için geçici düzlem kaynak tekniği kullanılarak ölçümler tekrar edilmiştir. Tüm ölçümler
20°C’de yapılmış ve iki farklı yöntem sonuçları irdelenmiştir. Elde edilen ısıl iletkenlik (k), ısıl yayınım (α),
özgül ısı (cp) ve yoğunluk (ρ) değerleri bir sistematik içerisinde sunulmuştur.
Sonuç olarak geçici düzlem kaynak tekniği ile ölçülen değerlerin, Isı akış ölçer yöntemi ile ölçülen değerlerle
aynı eğilimi gösterdiği belirlenmiştir. Böylece, geçici düzlem kaynak yönteminde değişken parametrelerinin (Isıl
güç ve zaman) ısıl özelliklere ne yönde etki ettiği saptanmıştır.

References

  • Koru, M., (2016). Determination of Temperature Based on Thermal Conductivities of Open Cell Insulation Materials by Heat Flow Meter Method, 1st International Conference on Engineering Technology and Applied Sciences Afyon Kocatepe Üniversite, Türkiye, 21-22 April 2016.
  • Choi, G.S., Kanga, J.S., Jeong, Y.S., Lee, S.E., Sohn, J.Y., (2006). An Experimental Study on Thermal Properties of Composite İnsulation. Thermochimica Acta 455 75–79, Republic of Korea.
  • Abdou, A., A., Budaiwi, I.M., Al-Homoud, M., (2005). Comparasion of thermal conductivity measurement of building insulation materials under various operating temperatures, Journal of building physics, 29, pp. 171-184.
  • Wakili, K., G., Binder, B., Vonbank, R., (2003). A simple method to determine the specific heat capacity of thermal insulations used in building construction, Energy and Buildings 35, pp. 413-415.
  • Child, P., W., Wilkes, K.,E., (1992). Thermal performance of fiberglass and cellulose attic insulation, in: thermal performance of the exterior envelopes of buildings V, ASHRAE/DOE/BTECC/CIBSEConference, Clear water beach, Florida, December 7–10, pp. 357–367.
  • Gnip, I., Vejelis, S., Vaitkus, S., (2012). Thermal conductivity of expanded polystyrene (EPS) at 10 ° C and its conversion to temperatures within interval from 0 to 50 ° C, Energy and Buildings, 52, 107–111.
  • Lakatos, A., Kalmar, F., (2013), Investigation of thickness and density dependence of thermal conductivity of expanded polystyrene insulation materials, Materials and structures, 46 1101- 1105.
  • Lakatos, A., (2014). Comparison of the thermal properties of different insulating materials, Advance materials research vol. 899 pp. 381-386.
  • Saleh, A., (2006). Measurements of Thermal Properties of İnsulation Materials by Using Transient Plane Source Technique, Energy Research Institute, Conventional Energy Division, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia, pp. 2184–2191.
  • Bohac, V., Gustavsson, M.K., Kubicar, L., Gustafsson S.E., (2000). Parameter Estimations for Measurements of Thermal Transport Properties with The Hot Disk Thermal Constants Analyzer, Institute of Physics, Slovak Academy of Science, Instruments Bratislava, Slovak Republic, Review of Scientific 71 (6), pp. 2452–2455.
  • Bohac, V., Gustavsson, M., Kubičár, Ľ., Vretenár V., (2005). Measurements of Building Materials by Transient Methods, Institute of Physics SAS, Dubravská cesta 9, Bratislava, Slovakia.
  • Dixon, C., (2000). Transient Plane Source Technique for Measuring Thermal Properties of Silicone Materials Used in Electronic Assemblies, The International Journal of Microcircuits and Electronic Packaging, Volume 23, Number 4, Fourth Quarter, (ISSN 1063-1674).
  • Johansson, P. Hagentoft, C.E., Adl-Zarrabi, B., (2011). Measurements of Thermal Properties of Vacuum Insulation Panels by using Transient Plane Source Sensor, Chalmers University of Technology, Gothenburg, Sweden.
  • Johansson, P. Hagentoft, C.E., Adl-Zarrabi, B., (2012). Using Transient Plane Source Sensor for Determination of Thermal Properties of Vacuum İnsulation Panels. Frontiers of Architectural Research 1, 334–340, Sweden.
  • Almanza, O., Rodríguez-Pérez, M.A., Saja J.A., (2003). Applicability of the Transient Plane Source Method To Measure the Thermal Conductivity of Low-Density Polyethylene Foams. Journal of Polymer Science: Part B: Polymer Physics, Vol. 42, 1226–1234, Spain.
  • Bouguerra A., (2001), Measurement of Thermal Conductivity, Thermal Diffusivity and Heat Capacity of Highly Porous Building Materials Using Transient Plane Source Technique, Int. Comm Heat Mass Transfer: vol. 28, NO. 8, pp. 1065-1078.
  • Rodríguez-Pérez, M.A., Solórzano, E., Reglero, J.A, Lehmhus, D., Wichmann, M., Saja J.A., (2008). An Experimental Study on The Thermal Conductivity of Aluminium Foams by Using The Transient Plane Source Method. Cellular Materials Group (CELLMAT), Condensed Matter Physics Department, Faculty of Science, University of Valladolid, 47011 Valladolid, Spain.
  • Aydın, H. ve Ekmekçi, İ, (2002). Isı Yalıtım Malzemesi Olarak Poliüretan Köpüğün Fiziksel ve Kimyasal Özelliklerinin Üretimi ve İncelenmesi, SAU Fen Bilimleri Enstitüsü Dergisi 6.Cilt, l. Sayı.
  • EN 12667: Thermal Performance of Building Materials and Products–Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods-Dry and Moist Product of High and Medium Thermal Resistance. European committee for standardization, Brussels (2001).
  • TS EN 12664 (2009), Thermal performance of building materials and products - Determination of thermal resistance by means of guarded hot plate and heat flow meter methods - Dry and moist products of medium and low thermal resistance, Turkish Standards Institution, Ankara.
  • ASTM C518: Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. American Society for Testing and Materials, Philadelphia, Pa., 15 p (2003).
  • TS ISO 8301 (2002) Thermal insulation - Determination of steady - State thermal resistance and related properties - Heat flow meter apparatus, Turkish Standards Institution, Ankara. TS 825 (2008), Thermal insulation requirements for buildings, Turkish Standards Institution, Ankara.
Year 2018, Volume: 10 Issue: 1, 1 - 18, 05.06.2018

Abstract

References

  • Koru, M., (2016). Determination of Temperature Based on Thermal Conductivities of Open Cell Insulation Materials by Heat Flow Meter Method, 1st International Conference on Engineering Technology and Applied Sciences Afyon Kocatepe Üniversite, Türkiye, 21-22 April 2016.
  • Choi, G.S., Kanga, J.S., Jeong, Y.S., Lee, S.E., Sohn, J.Y., (2006). An Experimental Study on Thermal Properties of Composite İnsulation. Thermochimica Acta 455 75–79, Republic of Korea.
  • Abdou, A., A., Budaiwi, I.M., Al-Homoud, M., (2005). Comparasion of thermal conductivity measurement of building insulation materials under various operating temperatures, Journal of building physics, 29, pp. 171-184.
  • Wakili, K., G., Binder, B., Vonbank, R., (2003). A simple method to determine the specific heat capacity of thermal insulations used in building construction, Energy and Buildings 35, pp. 413-415.
  • Child, P., W., Wilkes, K.,E., (1992). Thermal performance of fiberglass and cellulose attic insulation, in: thermal performance of the exterior envelopes of buildings V, ASHRAE/DOE/BTECC/CIBSEConference, Clear water beach, Florida, December 7–10, pp. 357–367.
  • Gnip, I., Vejelis, S., Vaitkus, S., (2012). Thermal conductivity of expanded polystyrene (EPS) at 10 ° C and its conversion to temperatures within interval from 0 to 50 ° C, Energy and Buildings, 52, 107–111.
  • Lakatos, A., Kalmar, F., (2013), Investigation of thickness and density dependence of thermal conductivity of expanded polystyrene insulation materials, Materials and structures, 46 1101- 1105.
  • Lakatos, A., (2014). Comparison of the thermal properties of different insulating materials, Advance materials research vol. 899 pp. 381-386.
  • Saleh, A., (2006). Measurements of Thermal Properties of İnsulation Materials by Using Transient Plane Source Technique, Energy Research Institute, Conventional Energy Division, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia, pp. 2184–2191.
  • Bohac, V., Gustavsson, M.K., Kubicar, L., Gustafsson S.E., (2000). Parameter Estimations for Measurements of Thermal Transport Properties with The Hot Disk Thermal Constants Analyzer, Institute of Physics, Slovak Academy of Science, Instruments Bratislava, Slovak Republic, Review of Scientific 71 (6), pp. 2452–2455.
  • Bohac, V., Gustavsson, M., Kubičár, Ľ., Vretenár V., (2005). Measurements of Building Materials by Transient Methods, Institute of Physics SAS, Dubravská cesta 9, Bratislava, Slovakia.
  • Dixon, C., (2000). Transient Plane Source Technique for Measuring Thermal Properties of Silicone Materials Used in Electronic Assemblies, The International Journal of Microcircuits and Electronic Packaging, Volume 23, Number 4, Fourth Quarter, (ISSN 1063-1674).
  • Johansson, P. Hagentoft, C.E., Adl-Zarrabi, B., (2011). Measurements of Thermal Properties of Vacuum Insulation Panels by using Transient Plane Source Sensor, Chalmers University of Technology, Gothenburg, Sweden.
  • Johansson, P. Hagentoft, C.E., Adl-Zarrabi, B., (2012). Using Transient Plane Source Sensor for Determination of Thermal Properties of Vacuum İnsulation Panels. Frontiers of Architectural Research 1, 334–340, Sweden.
  • Almanza, O., Rodríguez-Pérez, M.A., Saja J.A., (2003). Applicability of the Transient Plane Source Method To Measure the Thermal Conductivity of Low-Density Polyethylene Foams. Journal of Polymer Science: Part B: Polymer Physics, Vol. 42, 1226–1234, Spain.
  • Bouguerra A., (2001), Measurement of Thermal Conductivity, Thermal Diffusivity and Heat Capacity of Highly Porous Building Materials Using Transient Plane Source Technique, Int. Comm Heat Mass Transfer: vol. 28, NO. 8, pp. 1065-1078.
  • Rodríguez-Pérez, M.A., Solórzano, E., Reglero, J.A, Lehmhus, D., Wichmann, M., Saja J.A., (2008). An Experimental Study on The Thermal Conductivity of Aluminium Foams by Using The Transient Plane Source Method. Cellular Materials Group (CELLMAT), Condensed Matter Physics Department, Faculty of Science, University of Valladolid, 47011 Valladolid, Spain.
  • Aydın, H. ve Ekmekçi, İ, (2002). Isı Yalıtım Malzemesi Olarak Poliüretan Köpüğün Fiziksel ve Kimyasal Özelliklerinin Üretimi ve İncelenmesi, SAU Fen Bilimleri Enstitüsü Dergisi 6.Cilt, l. Sayı.
  • EN 12667: Thermal Performance of Building Materials and Products–Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods-Dry and Moist Product of High and Medium Thermal Resistance. European committee for standardization, Brussels (2001).
  • TS EN 12664 (2009), Thermal performance of building materials and products - Determination of thermal resistance by means of guarded hot plate and heat flow meter methods - Dry and moist products of medium and low thermal resistance, Turkish Standards Institution, Ankara.
  • ASTM C518: Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. American Society for Testing and Materials, Philadelphia, Pa., 15 p (2003).
  • TS ISO 8301 (2002) Thermal insulation - Determination of steady - State thermal resistance and related properties - Heat flow meter apparatus, Turkish Standards Institution, Ankara. TS 825 (2008), Thermal insulation requirements for buildings, Turkish Standards Institution, Ankara.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Articles
Authors

Murat Koru

Ceren Kaya This is me

Publication Date June 5, 2018
Published in Issue Year 2018 Volume: 10 Issue: 1

Cite

IEEE M. Koru and C. Kaya, “ISI AKIŞ ÖLÇER VE GEÇİCİ DÜZLEM KAYNAK TEKNİĞİ İLE KLASİK YALITIM MALZEMELERİNİN ISIL İLETKENLİK KATSAYILARININ BELİRLENMESİ”, IJTS, vol. 10, no. 1, pp. 1–18, 2018.

Dergi isminin Türkçe kısaltması "UTBD" ingilizce kısaltması "IJTS" şeklindedir.

Dergimizde yayınlanan makalelerin tüm bilimsel sorumluluğu yazar(lar)a aittir. Editör, yardımcı editör ve yayıncı dergide yayınlanan yazılar için herhangi bir sorumluluk kabul etmez.