Research Article
BibTex RIS Cite

Rulet Tekerleği Yöntemi Kullanılarak Simbiyotik Organizmalar Arama Algoritmasının Geliştirilmesi

Year 2019, Volume: 11 Issue: 3, 186 - 200, 30.12.2019

Abstract

Simbiyotik
Organizmalar Arama (Symbiotic Organisms Search-SOS)    Algoritması, doğadaki canlıların simbiyotik
ilişkilerini taklit ederek geliştirilmiş güçlü bir meta-sezgisel optimizasyon
algoritmasıdır. Bu çalışmada SOS algoritmasına rulet tekerleği yöntemi
kullanılarak geliştirilmesi amaçlamıştır. Geliştirilen R-SOS algoritması ile
çözümün olması beklenen optimum noktaya daha da yaklaşması sağlanmıştır.
Geliştirilen algoritma 30 benchmark üzerinde test edilmiş ve sonuçların klasik
SOS algoritmasına göre daha güçlü olduğu görülmüştür.

References

  • [1] Cheng, M.Y., Prayogo, D. (2014). Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput. Struct. 139, 98-112.
  • [2] Goldberg, D. E., & Holland, J. H.. (1988). Genetic algorithms and machine learning. Machine learning, 3(2), 95-99,.
  • [3] Kennedy, J.; Eberhart, R. C., (1995). Particle Swarm Optimization, Proc. of the IEEE Int. Conference on Neural Networks, 4, 1942-1948,.
  • [4]. Storn R., (1997). Diferential Evolution, A Simple and Efficient Heuristic Strategy for Global Optimization over Continuous Spaces", Journal of Global Optimization, 11: 341-359.
  • [5] Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied soft computing, 8(1), 687-697.
  • [6] Jones, D. F., Mirrazavi, S. K., & Tamiz, M. (2002). Multi-objective meta-heuristics: An overview of the current state-of-the-art. European journal of operational research, 137(1), 1-9.
  • [7] Yang, X. S., & Deb, S. (2009, December). Cuckoo search via Lévy flights. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC) (pp. 210-214).
  • [8] Baker, J.E. (1985). Adaptive Selectşon Methods for Genetic Algorithms, Proc.1st Int. Conf. Genetic Algorithms and their Applications, Lawrence Erlbaum Associates, Hillsdale, NJ, pp.100-101.
  • [9] Malhotra, R., Singh N., Singh Y. (2011). Genetic Algorithms: Concepts, Design for Optimization of Process Controllers, Computer and Information Science, Vol. 4, No.2, 39.
  • [10] Jain, A., Jain, S., Chande, P.K., (2010). Formulation of Genetic Algorithm to Generate Good Quality Cource Timetable, Intnational Journal of Innovation, Management and Technology, Vol. 1, No.3, 248.

Improving Symbiotic Organisms Search Algorithm Using Roulette Wheel Method

Year 2019, Volume: 11 Issue: 3, 186 - 200, 30.12.2019

Abstract

Symbiotic
Organisms Search (SOS) Algorithm is a powerful meta-heuristic optimization
algorithm developed by simulating the symbiotic relationships of living
creatures in nature. In this study, it was aimed to develop SOS algorithm by
using roulette wheel method. With the R-SOS algorithm developed, the solution
is approached to the expected optimum point. The developed algorithm was tested
on 30 benchmarks and the results were found to be stronger than the classical
SOS algorithm.

References

  • [1] Cheng, M.Y., Prayogo, D. (2014). Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput. Struct. 139, 98-112.
  • [2] Goldberg, D. E., & Holland, J. H.. (1988). Genetic algorithms and machine learning. Machine learning, 3(2), 95-99,.
  • [3] Kennedy, J.; Eberhart, R. C., (1995). Particle Swarm Optimization, Proc. of the IEEE Int. Conference on Neural Networks, 4, 1942-1948,.
  • [4]. Storn R., (1997). Diferential Evolution, A Simple and Efficient Heuristic Strategy for Global Optimization over Continuous Spaces", Journal of Global Optimization, 11: 341-359.
  • [5] Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied soft computing, 8(1), 687-697.
  • [6] Jones, D. F., Mirrazavi, S. K., & Tamiz, M. (2002). Multi-objective meta-heuristics: An overview of the current state-of-the-art. European journal of operational research, 137(1), 1-9.
  • [7] Yang, X. S., & Deb, S. (2009, December). Cuckoo search via Lévy flights. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC) (pp. 210-214).
  • [8] Baker, J.E. (1985). Adaptive Selectşon Methods for Genetic Algorithms, Proc.1st Int. Conf. Genetic Algorithms and their Applications, Lawrence Erlbaum Associates, Hillsdale, NJ, pp.100-101.
  • [9] Malhotra, R., Singh N., Singh Y. (2011). Genetic Algorithms: Concepts, Design for Optimization of Process Controllers, Computer and Information Science, Vol. 4, No.2, 39.
  • [10] Jain, A., Jain, S., Chande, P.K., (2010). Formulation of Genetic Algorithm to Generate Good Quality Cource Timetable, Intnational Journal of Innovation, Management and Technology, Vol. 1, No.3, 248.
There are 10 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Articles
Authors

Yusuf Sönmez 0000-0002-9775-9835

Mesut Ünal This is me

Publication Date December 30, 2019
Published in Issue Year 2019 Volume: 11 Issue: 3

Cite

IEEE Y. Sönmez and M. Ünal, “Rulet Tekerleği Yöntemi Kullanılarak Simbiyotik Organizmalar Arama Algoritmasının Geliştirilmesi”, IJTS, vol. 11, no. 3, pp. 186–200, 2019.

Dergi isminin Türkçe kısaltması "UTBD" ingilizce kısaltması "IJTS" şeklindedir.

Dergimizde yayınlanan makalelerin tüm bilimsel sorumluluğu yazar(lar)a aittir. Editör, yardımcı editör ve yayıncı dergide yayınlanan yazılar için herhangi bir sorumluluk kabul etmez.