Research Article
BibTex RIS Cite

Akdağmadeni (Yozgat) yeraltı kurşun-çinko işletmesinde kayaçların ısıl iletkenliğinin bazı fiziksel özelliklere bağlı olarak değişimi

Year 2021, Volume: 13 Issue: 1, 1 - 13, 30.04.2021

Abstract

Kayaçların ısıl iletkenlikleri çeşitli faktörlere bağlı olarak farklılıklar göstermektedir. Bu çalışmada kayaçların ısıl iletkenliğinde etkili olan faktörlerin ayrıntılı olarak incelenmesi amaçlanmıştır. Bu amaçla; kayaçlarda değişik koşullarda ısıl iletkenlik ölçümleri gerçekleştirilmiş ve ısı iletim katsayısının kayaçların gözeneklilik, su emme katsayısı, yoğunluk, kılcal su emme katsayısı, ultrasonik hız ve sıcaklığa bağlı olarak değişimleri incelenmiştir. Sonuç olarak; sıcaklık, görünür ve gerçek yoğunluk, su emme katsayısı, kılcal su emme katsayısı ve P-dalga hızı arttıkça ısı iletim katsayısı artmakta, gözeneklilik arttıkça azalmaktadır. Bütün numunelerde sıcaklık artışına bağlı olarak ısı iletim katsayıları %5-%12 arasında değişen oranlarda artmıştır. Korelasyon katsayısının en yüksek (0,993, K2E) ve en düşük (0,853, K2B) değerleri nemli numunelerde elde edilmiştir. Kayaçların ısıl iletkenliği ile fiziksel özellikleri arasında kesin ilişkiler vardır ve bu ilişkilerde korelasyon katsayısı sıcaklık hariç 0,57-0,93 aralığında değişmektedir.

Supporting Institution

Cumhuriyet Üniversitesi BAP

Project Number

M-554

References

  • Döver, D.H., 1991. Güney Afrika Cumhuriyeti’nde West Driefontein ve Kloof işletmelerinde ocak ikliminin incelenmesi. Yüksek Lisans Tezi, İTÜ, p. 213.
  • Hartman, H.L., 1997. Mine Ventilation and Air Conditioning, 3rd ed., Wiley and Sons, New York, p. 730. enerji.gov.tr; IEA, 2019.
  • Kukkonen, I.,& Lindberg, A., 1998. Thermal properties of rocks at the investigation sites: measured and calculated thermal conductivity, specific heat capacity and thermal diffusivity. Working Report.
  • Robertson, E. C., & Peck, D. L., 1974. Thermal conductivity of vesicular basalt from Hawaii. Journal of Geophysical Research, 79(32), 4875-4888.
  • Desai, P. D., Navarro, R. A., Hasan, S. E., Ho, C. Y., & DeWitt, D. P., 1974. Thermophysical properties of selected rocks (No. CINDAS-TPRC-23). Thermophysıcal and Electronıc Properties Information Analysıs Center Lafayette In.
  • Messmer, J. H., 1965. The thermal conductivity of porous media. IV Sandstones. The effect of temperature and saturation. In Proceedings of the 5th Conference on thermal conductivity, Vol. 1, pp. 1-29.
  • Buntebarth,G., 1991. Thermalp ropertieso f KTB-OberpfalzV B core samples at elevatedt emperaturea nd pressureS, ci. Drill., 2, 73-80.
  • Clauser, C., and E. Huenges., 1995. Thermal conductivity of rocks and minerals, in rock physics and phase relations: A Handbook of PhysicalC onstantsA, GU Ref. Shelf, vol. 3, edited by T. J. Ahrens, pp. 105-126,A GU, WashingtonD, .C.
  • Somerton, W. H., 1992. Thermal properties and temperature-related behavior of rock/fluids systems 2, Elsevier, New York, p.57
  • Lee, Y., Deming, D., 1998. Evaluation of thermal conductivity temperature corrections applied in terrestrial heat flow studies. Journal of Geophysical Research: Solid Earth (1978–2012), 103(B2), 2447-2454.
  • Kuriyagawa, M., Matsunaga, I., Yamaguchi, T., 1983. An ın-situ determination of the thermal conductivity of granitic rock. 5th International Congress on Rock Mechanics, Melbourne, Australia,s. E147-E150.
  • Birch, F., and H. Clark., 1940. The thermal conductivity of rocks and its dependence upon temperature and composition A, m. J. Scoe,2 38,529-558, 613-635.
  • Cermak, V., & Rybach, L., 1982. Thermal conductivity and specific heat of minerals and rocks. Physical Properties of Rocks, Sub Vol. a, Geophysics and Space Research, Group V, Springer-Verlag, Berlin, 305-341.
  • Anand, J., Sommerton, W.H. and Gomaa, E., 1973. Predicting thermal conductivities of formations from other known properties. Soc. Pet. Eng. J., 13, 267-273.
  • Sugawara, A., & Yoshizawa, Y., 1962. An experimental investigation on the thermal conductivity of consolidated porous materials. Journal of Applied Physics, 33(10), 3135-3138.
  • Brigaud, F., Vasseur, G., 1989. Minaralogy, porosity and fluit control of thermal conductivity of sedimantary rocks. Geophysical Journal, Vol. 98, 525-542.
  • Ashworth, E. K., 1992. The variation of the thermal conductivity of tuff with moisture experimental results and proposed model. In The 33th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association.
  • Duruturk, YS., 1999. The variation of thermal conductivity with pressure in rocks and the investigation of its effect in underground mines (PhD thesis), Cumhuriyet University, Sivas, Turkey, p. 188.
  • Durutürk, Y.S., Demirci, A., Keçeciler, A., 2002. Variation of thermal conductivity of rocks with pressure. CIM Bulletin, Vol. 95, 67-71.
  • Demirci, A., Görgülü, K., Durutürk, Y.S., 2004. Thermal conductivity of rocks and ıts variation with uniaxial and triaxial stress, International Journal of Rock Mechanics and Mining Sciences, Vol. 41/7, pp. 1133-1138.
  • Görgülü, K., 2004. Determination of the relationships between the thermal conductivity and material properties of rocks. Journal of University of Science and Technology Beijing,Vol. 11, Num. 4, pp. 297-301.
  • Görgülü, K., Durutürk, Y. S., & Demirci, A., 2004. Kayaçların ısı iletkenliklerini etkileyen faktörler. KAYAMEK′2004-VII. Bölgesel Kaya Mekaniği Sempozyumu, Sivas.
  • Giraud, A., Gruescu, C., Do, D. P., Homand, F., & Kondo, D., 2007. Effective thermal conductivity of transversely isotropic media with arbitrary oriented ellipsoidal inhomogeneities. International Journal of Solids and Structures, 44(9), 2627-2647.
  • Görgülü, K., Durutürk, Y. S., Demirci, A., & Poyraz, B., 2008. Influences of uniaxial stress and moisture content on the thermal conductivity of rocks. International Journal of Rock Mechanics and Mining Sciences, 45(8), 1439-1445.
  • Sundberg, J., Back, P. E., Ericsson, L. O., Wrafter, J., 2009. Estimation of thermal conductivity and its spatial variability in igneous rocks from in situ density logging. International Journal of Rock Mechanics and Mining Sciences, 46(6), 1023-1028.
  • Abdulagatova, Z., Abdulagatov, I. M., and Emirov, V. N., 2009. Effectj of temperature and pressure on the thermal conductivity of sandstone. International Journal of Rock Mechanics and Mining Sciences, 46(6), 1055-1071.
  • Cho, W. J., Kwon, S., & Choi, J. W., 2009. The thermal conductivity for granite with various water contents. Engineering Geology, 107(3), 167-171.
  • Zhao, X., Lee, Y. Y., & Liew, K. M., 2009. Mechanical and thermal buckling analysis of functionally graded plates. Composite Structures, 90(2), 161-171.
  • Abdulagatova, Z. Z., Abdulagatov, I. M., & Emirov, S. N., 2010. Effect of pressure, temperature, and oil-saturation on the thermal conductivity of sandstone up to 250MPa and 520K. Journal of Petroleum Science and Engineering, 73(1), 141-155.
  • Osako, M., Yoneda, A., & Ito, E., 2010. Thermal diffusivity, thermal conductivity and heat capacity of serpentine (antigorite) under high pressure. Physics of the Earth and Planetary Interiors, 183(1), 229-233.
  • Kwon, S., Cho, W. J., & Choi, J. W., 2011. Initial thermal conditions around an underground research tunnel at shallow depth. International Journal of Rock Mechanics and Mining Sciences, 48(1), 86-94.
  • Kwon, S., Lee, C., Yoon, C. H., & Cho, W. J., 2013. In situ borehole heater test at the KAERI Underground Research Tunnel in granite. Annals of Nuclear Energy, 62, 526-535.
  • Kim, H., Cho, J. W., Song, I., & Min, K. B., 2012. Anisotropy of elastic moduli, P-wave velocities, and thermal conductivities of Asan Gneiss, Boryeong Shale, and Yeoncheon Schist in Korea. Engineering Geology, 147, 68-77.
  • Merriman, J. D., Whittington, A. G., Hofmeister, A. M., Nabelek, P. I., & Benn, K., 2013. Thermal transport properties of major Archean rock types to high temperature and implications for cratonic geotherms. Precambrian Research, 233, 358-372.
  • Barry-Macaulay, D., Bouazza, A., Singh, R. M., Wang, B., & Ranjith, P. G., 2013. Thermal conductivity of soils and rocks from the Melbourne (Australia) region. Engineering Geology, 164, 131-138.
  • Eppelbaum, L., Kutasov, I., & Pilchin, A., 2014. Thermal Properties of Rocks and Density of Fluids. In Applied Geothermics. Springer Berlin Heidelberg, 99-149.
  • Nagaraju, P.,& Roy, S., 2014. Effect of water saturation on rock thermal conductivity measurements. Tectonophysics, 626, 137-143.
  • Pasquale, V., Verdoya, M., & Chiozzi, P., 2015. Measurements of rock thermal conductivity with a Transient Divided Bar. Geothermics, 53, 183-189.
  • Çolakoğlu, A., Genç. Y., 2001. Akdağmadeni (Yozgat) kurşun-çinko yatağının makro-mikro dokusal özellikleri ve kökensel yorumu, Türkiye Jeoloji Bülteni, 44,1.
  • Whitney, D., Teyssier, C., Dilek, Y., Fayan, K., 2001. Metamorphism of the central anatolian crystalline complex, Turkey.: Influence of orogen-normal collision vs. wrench-dominated tectonics on P-T-T paths: J. Metamorphic Geol., v.19, pp. 411-432. Higashi, A., 1952. Thermal Condudtivity of Frozen Soil. Journal of the Faculty of Science, Hokkaido University. Ser. 2, Physics, 4(2), 95-106.
  • Kersten, M. S., 1949. Thermal properties of soils.
  • Penner, E., 1963. Anisotropic thermal conduction in clay sediments.
  • Url-3 <http://nptel.ac.in/courses/105103025/module5/lec39/2.html/>, alındığı tarih: 24.09.2015.
  • Babacan, A. E., Ersoy, H., & Gelişli, K., 2012. Kayaçların Fiziksel, Mekanik ve Elastik Özelliklerinin Ultrasonik Hız Tekniği ve Zaman-Frekans Analiziyle Belirlenmesi: Bej Kireçtaşları (KD Türkiye) Üzerine Örnek Bir Çalışma. Geological Engineering Journal/Jeoloji Mühendisligi Dergisi, 36(1).

Variation of thermal conductivity of rocks depending on some physical properties in akdağmadeni (Yozgat) underground lead-zinc mine

Year 2021, Volume: 13 Issue: 1, 1 - 13, 30.04.2021

Abstract

The thermal conductivity of rocks varies depending on various factors. In this study, it is aimed to examine the factors affecting the thermal conductivity of rocks in detail. For this purpose; thermal conductivity measurements were carried out in different conditions in rocks and changes in thermal conductivity coefficient depending on porosity, water absorption coefficient, density, capillary water absorption coefficient, ultrasonic velocity and temperature were investigated. As a result; as temperature, apparent and true density, water absorption coefficient, capillary water absorption coefficient and P-wave velocity increase, thermal conductivity coefficient increases and decrease with increasing porosity. İn all samples, thermal conductivity coefficient increased between 5-12% depending on the temperature increase. The highest (0,993, K2E) and lowest (0,853, K2B) values of the correlation coefficient were obtained in moist samples. There are definite relationships between thermal conductivity and physical properties of rocks and the correlation coefficient in these relationships varies between 0,57-0,93 except temperature.

Project Number

M-554

References

  • Döver, D.H., 1991. Güney Afrika Cumhuriyeti’nde West Driefontein ve Kloof işletmelerinde ocak ikliminin incelenmesi. Yüksek Lisans Tezi, İTÜ, p. 213.
  • Hartman, H.L., 1997. Mine Ventilation and Air Conditioning, 3rd ed., Wiley and Sons, New York, p. 730. enerji.gov.tr; IEA, 2019.
  • Kukkonen, I.,& Lindberg, A., 1998. Thermal properties of rocks at the investigation sites: measured and calculated thermal conductivity, specific heat capacity and thermal diffusivity. Working Report.
  • Robertson, E. C., & Peck, D. L., 1974. Thermal conductivity of vesicular basalt from Hawaii. Journal of Geophysical Research, 79(32), 4875-4888.
  • Desai, P. D., Navarro, R. A., Hasan, S. E., Ho, C. Y., & DeWitt, D. P., 1974. Thermophysical properties of selected rocks (No. CINDAS-TPRC-23). Thermophysıcal and Electronıc Properties Information Analysıs Center Lafayette In.
  • Messmer, J. H., 1965. The thermal conductivity of porous media. IV Sandstones. The effect of temperature and saturation. In Proceedings of the 5th Conference on thermal conductivity, Vol. 1, pp. 1-29.
  • Buntebarth,G., 1991. Thermalp ropertieso f KTB-OberpfalzV B core samples at elevatedt emperaturea nd pressureS, ci. Drill., 2, 73-80.
  • Clauser, C., and E. Huenges., 1995. Thermal conductivity of rocks and minerals, in rock physics and phase relations: A Handbook of PhysicalC onstantsA, GU Ref. Shelf, vol. 3, edited by T. J. Ahrens, pp. 105-126,A GU, WashingtonD, .C.
  • Somerton, W. H., 1992. Thermal properties and temperature-related behavior of rock/fluids systems 2, Elsevier, New York, p.57
  • Lee, Y., Deming, D., 1998. Evaluation of thermal conductivity temperature corrections applied in terrestrial heat flow studies. Journal of Geophysical Research: Solid Earth (1978–2012), 103(B2), 2447-2454.
  • Kuriyagawa, M., Matsunaga, I., Yamaguchi, T., 1983. An ın-situ determination of the thermal conductivity of granitic rock. 5th International Congress on Rock Mechanics, Melbourne, Australia,s. E147-E150.
  • Birch, F., and H. Clark., 1940. The thermal conductivity of rocks and its dependence upon temperature and composition A, m. J. Scoe,2 38,529-558, 613-635.
  • Cermak, V., & Rybach, L., 1982. Thermal conductivity and specific heat of minerals and rocks. Physical Properties of Rocks, Sub Vol. a, Geophysics and Space Research, Group V, Springer-Verlag, Berlin, 305-341.
  • Anand, J., Sommerton, W.H. and Gomaa, E., 1973. Predicting thermal conductivities of formations from other known properties. Soc. Pet. Eng. J., 13, 267-273.
  • Sugawara, A., & Yoshizawa, Y., 1962. An experimental investigation on the thermal conductivity of consolidated porous materials. Journal of Applied Physics, 33(10), 3135-3138.
  • Brigaud, F., Vasseur, G., 1989. Minaralogy, porosity and fluit control of thermal conductivity of sedimantary rocks. Geophysical Journal, Vol. 98, 525-542.
  • Ashworth, E. K., 1992. The variation of the thermal conductivity of tuff with moisture experimental results and proposed model. In The 33th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association.
  • Duruturk, YS., 1999. The variation of thermal conductivity with pressure in rocks and the investigation of its effect in underground mines (PhD thesis), Cumhuriyet University, Sivas, Turkey, p. 188.
  • Durutürk, Y.S., Demirci, A., Keçeciler, A., 2002. Variation of thermal conductivity of rocks with pressure. CIM Bulletin, Vol. 95, 67-71.
  • Demirci, A., Görgülü, K., Durutürk, Y.S., 2004. Thermal conductivity of rocks and ıts variation with uniaxial and triaxial stress, International Journal of Rock Mechanics and Mining Sciences, Vol. 41/7, pp. 1133-1138.
  • Görgülü, K., 2004. Determination of the relationships between the thermal conductivity and material properties of rocks. Journal of University of Science and Technology Beijing,Vol. 11, Num. 4, pp. 297-301.
  • Görgülü, K., Durutürk, Y. S., & Demirci, A., 2004. Kayaçların ısı iletkenliklerini etkileyen faktörler. KAYAMEK′2004-VII. Bölgesel Kaya Mekaniği Sempozyumu, Sivas.
  • Giraud, A., Gruescu, C., Do, D. P., Homand, F., & Kondo, D., 2007. Effective thermal conductivity of transversely isotropic media with arbitrary oriented ellipsoidal inhomogeneities. International Journal of Solids and Structures, 44(9), 2627-2647.
  • Görgülü, K., Durutürk, Y. S., Demirci, A., & Poyraz, B., 2008. Influences of uniaxial stress and moisture content on the thermal conductivity of rocks. International Journal of Rock Mechanics and Mining Sciences, 45(8), 1439-1445.
  • Sundberg, J., Back, P. E., Ericsson, L. O., Wrafter, J., 2009. Estimation of thermal conductivity and its spatial variability in igneous rocks from in situ density logging. International Journal of Rock Mechanics and Mining Sciences, 46(6), 1023-1028.
  • Abdulagatova, Z., Abdulagatov, I. M., and Emirov, V. N., 2009. Effectj of temperature and pressure on the thermal conductivity of sandstone. International Journal of Rock Mechanics and Mining Sciences, 46(6), 1055-1071.
  • Cho, W. J., Kwon, S., & Choi, J. W., 2009. The thermal conductivity for granite with various water contents. Engineering Geology, 107(3), 167-171.
  • Zhao, X., Lee, Y. Y., & Liew, K. M., 2009. Mechanical and thermal buckling analysis of functionally graded plates. Composite Structures, 90(2), 161-171.
  • Abdulagatova, Z. Z., Abdulagatov, I. M., & Emirov, S. N., 2010. Effect of pressure, temperature, and oil-saturation on the thermal conductivity of sandstone up to 250MPa and 520K. Journal of Petroleum Science and Engineering, 73(1), 141-155.
  • Osako, M., Yoneda, A., & Ito, E., 2010. Thermal diffusivity, thermal conductivity and heat capacity of serpentine (antigorite) under high pressure. Physics of the Earth and Planetary Interiors, 183(1), 229-233.
  • Kwon, S., Cho, W. J., & Choi, J. W., 2011. Initial thermal conditions around an underground research tunnel at shallow depth. International Journal of Rock Mechanics and Mining Sciences, 48(1), 86-94.
  • Kwon, S., Lee, C., Yoon, C. H., & Cho, W. J., 2013. In situ borehole heater test at the KAERI Underground Research Tunnel in granite. Annals of Nuclear Energy, 62, 526-535.
  • Kim, H., Cho, J. W., Song, I., & Min, K. B., 2012. Anisotropy of elastic moduli, P-wave velocities, and thermal conductivities of Asan Gneiss, Boryeong Shale, and Yeoncheon Schist in Korea. Engineering Geology, 147, 68-77.
  • Merriman, J. D., Whittington, A. G., Hofmeister, A. M., Nabelek, P. I., & Benn, K., 2013. Thermal transport properties of major Archean rock types to high temperature and implications for cratonic geotherms. Precambrian Research, 233, 358-372.
  • Barry-Macaulay, D., Bouazza, A., Singh, R. M., Wang, B., & Ranjith, P. G., 2013. Thermal conductivity of soils and rocks from the Melbourne (Australia) region. Engineering Geology, 164, 131-138.
  • Eppelbaum, L., Kutasov, I., & Pilchin, A., 2014. Thermal Properties of Rocks and Density of Fluids. In Applied Geothermics. Springer Berlin Heidelberg, 99-149.
  • Nagaraju, P.,& Roy, S., 2014. Effect of water saturation on rock thermal conductivity measurements. Tectonophysics, 626, 137-143.
  • Pasquale, V., Verdoya, M., & Chiozzi, P., 2015. Measurements of rock thermal conductivity with a Transient Divided Bar. Geothermics, 53, 183-189.
  • Çolakoğlu, A., Genç. Y., 2001. Akdağmadeni (Yozgat) kurşun-çinko yatağının makro-mikro dokusal özellikleri ve kökensel yorumu, Türkiye Jeoloji Bülteni, 44,1.
  • Whitney, D., Teyssier, C., Dilek, Y., Fayan, K., 2001. Metamorphism of the central anatolian crystalline complex, Turkey.: Influence of orogen-normal collision vs. wrench-dominated tectonics on P-T-T paths: J. Metamorphic Geol., v.19, pp. 411-432. Higashi, A., 1952. Thermal Condudtivity of Frozen Soil. Journal of the Faculty of Science, Hokkaido University. Ser. 2, Physics, 4(2), 95-106.
  • Kersten, M. S., 1949. Thermal properties of soils.
  • Penner, E., 1963. Anisotropic thermal conduction in clay sediments.
  • Url-3 <http://nptel.ac.in/courses/105103025/module5/lec39/2.html/>, alındığı tarih: 24.09.2015.
  • Babacan, A. E., Ersoy, H., & Gelişli, K., 2012. Kayaçların Fiziksel, Mekanik ve Elastik Özelliklerinin Ultrasonik Hız Tekniği ve Zaman-Frekans Analiziyle Belirlenmesi: Bej Kireçtaşları (KD Türkiye) Üzerine Örnek Bir Çalışma. Geological Engineering Journal/Jeoloji Mühendisligi Dergisi, 36(1).
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies
Journal Section Articles
Authors

Yavuz Selim Durutürk 0000-0002-7489-0064

Gökhan Erol 0000-0003-1013-5542

Project Number M-554
Publication Date April 30, 2021
Published in Issue Year 2021 Volume: 13 Issue: 1

Cite

IEEE Y. S. Durutürk and G. Erol, “Akdağmadeni (Yozgat) yeraltı kurşun-çinko işletmesinde kayaçların ısıl iletkenliğinin bazı fiziksel özelliklere bağlı olarak değişimi”, IJTS, vol. 13, no. 1, pp. 1–13, 2021.

Dergi isminin Türkçe kısaltması "UTBD" ingilizce kısaltması "IJTS" şeklindedir.

Dergimizde yayınlanan makalelerin tüm bilimsel sorumluluğu yazar(lar)a aittir. Editör, yardımcı editör ve yayıncı dergide yayınlanan yazılar için herhangi bir sorumluluk kabul etmez.