Research Article
BibTex RIS Cite

Termal enerji depolamalı parabolik güneş kolektörünün termodinamik incelenmesi

Year 2024, Volume: 16 Issue: 2, 53 - 61, 30.12.2024
https://doi.org/10.55974/utbd.1509902

Abstract

Günümüzde artan enerji ihtiyacını çevreye zarar vermesen karşılamak için yenilenebilir enerji kaynaklarına olan ilgi hızla artmaktadır. Bu çalışmada, Isparta ilinde kurulması planlanan bir parabolik güneş kolektörünün (PTC) enerji ve ekserji performansları incelenmiştir. Güneş enerjisinin kesintili yapısını dengelemek amacıyla sisteme bir termal enerji depolama (TES) birimi entegre edilmiştir. Matematiksel modelleme ve termodinamik analizler ile enerji ve ekserji verimlilikleri değerlendirilmiştir. Çalışmada, 2023 yılı Temmuz ayının 23. günü seçilmiş ve bu günde maksimum ışınım şiddeti 1050 W/m2 olarak belirlenmiştir. Enerji verimliliği %47.1 ve ekserji verimliliği ise %16.68 olarak hesaplanmıştır. Tank hacminin de en iyi performansı 2 m3 hacimde gösterdiği ve tank sıcaklığının 135.3 ℃ olduğu tespit edilmiştir. Işınım şiddetinin enerji verimliliği üzerindeki etkisi grafiklerle desteklenmiş ve önerilen sistemin Isparta ili için uygun bir çözüm sunduğu ortaya konulmuştur.

References

  • Mohseni M, Hajinezhad A, Moosavian SF. Thermodynamic analysis and multi-objective optimization of an ORC-based solar-natural gas driven trigeneration system for a residential area. Case Studies in Thermal Engineering. 59(104513), 2024.
  • Murugan S, Horák B. Tri and polygeneration systems-A review. Renewable and Sustainable Energy Reviews, 60, 1032-1051, 2016.
  • Heidari A, Aslani A, Hajinezhad A, Tayyar SH. Strategic analysis of Iran's energy system. Strategic Planning for Energy and the Environment, 37(1), 56-79, 2017.
  • Zaharil HA, Yang H. Thermodynamic analysis of a parabolic trough power plant integrating supercritical carbon dioxide Brayton cycle and direct contact membrane distillation. Applied Thermal Engineering, 123637, 2024.
  • Cetiner C. Thermal analysis of operating a solar-powered diffusion absorption refrigerator with a parabolic collector. Case Studies in Thermal Engineering, 53(103893), 2024.
  • AlZahrani AA, Dincer I. Energy and exergy analyses of a parabolic trough solar power plant using carbon dioxide power cycle. Energy conversion and management, 158, 476-488, 2018.
  • Achkari O, El Fadar A. Latest developments on TES and CSP technologies – energy and environmental issues, applications and research trends, Applied Thermal Engineering, 167 (114806), 1-31, 2020. https://doi.org/10.1016/j.applthermaleng.2019.114806
  • Shabgard H, Rahimi H, Naghashnejad M, Acosta PM, Sharifi N, Mahdavi M, Faghri A. Thermal energy storage in desalination systems: state of the art, challenges and opportunities. J. Energy Storage 52 (104799), 1-30, 2022. https://doi. org/10.1016/j.est.2022.104799.
  • Batgi SU, Dincer I. Design of a two-renewable energy source-based system with thermal energy storage and hydrogen storage for sustainable development. Journal of Energy Storage, 89(111742), 2024.
  • Erdemir D, Dincer I. A new solar energy-based system integrated with hydrogen storage and heat recovery for sustainable community. Sustainable Energy Technologies and Assessments, 52(102355), 2022. https://doi.org/10.1016/j.seta.2022.102355.
  • Powell KM, Edgar TF. Modeling and control of a solar thermal power plant with thermal energy storage. Chem. Eng. Sci. 71 138–145, 2012. https://doi.org/ 10.1016/j.ces.2011.12.009.
  • Bellos E. Tzivanidis C. Belessiotis V. Daily performance of parabolic trough solar collectors. Solar Energy, 158, 663-678, 2017.
  • Bellos, E, Tzivanidis C. Enhancing the performance of evacuated and non-evacuated parabolic trough collectors using twisted tape inserts, perforated plate inserts and internally finned absorber. Energies, 11(5), 1-28, 2018.
  • Kizilkan O, Khanmohammadi S, Saadat-Targhi M. Solar based CO2 power cycle employing thermoelectric generator and absorption refrigeration: Thermodynamic assessment and multi-objective optimization. Energy conversion and management, 200(112072), 2019.
  • Bellos E, Tzivanidis C. Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors. Renewable Energy, 114, 1376-1393, 2017.
  • Zheng D, Wang J, Chen Z, Baleta J, Sundén B. Performance analysis of a plate heat exchanger using various nanofluids. International Journal of Heat and Mass Transfer, 158(119993), 2020.
  • Islam MS, Xu F, Saha SC. Thermal performance investigation in a novel corrugated plate heat exchanger. International journal of heat and mass transfer, 148(119095), 2020.
  • Meteonorm. https://meteonorm.com, (Erişim Tarihi: 31.12.2023).

Thermodynamıc investigation of parabolic solar collector with thermal energy storage

Year 2024, Volume: 16 Issue: 2, 53 - 61, 30.12.2024
https://doi.org/10.55974/utbd.1509902

Abstract

Nowadays, the interest in renewable energy sources is rapidly increasing in order to meet the increasing energy demand without harming the environment. In this study, the energy and exergy performances of a parabolic solar collector (PTC) planned to be installed in Isparta province are investigated. A thermal energy storage (TES) unit is integrated into the system to compensate for the intermittent nature of solar energy. Energy and exergy efficiencies are evaluated by mathematical modeling and thermodynamic analysis. In the study, the 23rd day of July, 2023 was selected and the maximum irradiance on this day was determined as 1050 W/m2. Energy efficiency was calculated as 47.1% and exergy efficiency as 16.68%. It was also found that the tank volume showed the best performance at a volume of 2 m3 and the tank temperature was 135.3 ℃. The effect of radiation intensity on energy efficiency is supported with graphs and it is shown that the proposed system offers a suitable solution for Isparta province.

References

  • Mohseni M, Hajinezhad A, Moosavian SF. Thermodynamic analysis and multi-objective optimization of an ORC-based solar-natural gas driven trigeneration system for a residential area. Case Studies in Thermal Engineering. 59(104513), 2024.
  • Murugan S, Horák B. Tri and polygeneration systems-A review. Renewable and Sustainable Energy Reviews, 60, 1032-1051, 2016.
  • Heidari A, Aslani A, Hajinezhad A, Tayyar SH. Strategic analysis of Iran's energy system. Strategic Planning for Energy and the Environment, 37(1), 56-79, 2017.
  • Zaharil HA, Yang H. Thermodynamic analysis of a parabolic trough power plant integrating supercritical carbon dioxide Brayton cycle and direct contact membrane distillation. Applied Thermal Engineering, 123637, 2024.
  • Cetiner C. Thermal analysis of operating a solar-powered diffusion absorption refrigerator with a parabolic collector. Case Studies in Thermal Engineering, 53(103893), 2024.
  • AlZahrani AA, Dincer I. Energy and exergy analyses of a parabolic trough solar power plant using carbon dioxide power cycle. Energy conversion and management, 158, 476-488, 2018.
  • Achkari O, El Fadar A. Latest developments on TES and CSP technologies – energy and environmental issues, applications and research trends, Applied Thermal Engineering, 167 (114806), 1-31, 2020. https://doi.org/10.1016/j.applthermaleng.2019.114806
  • Shabgard H, Rahimi H, Naghashnejad M, Acosta PM, Sharifi N, Mahdavi M, Faghri A. Thermal energy storage in desalination systems: state of the art, challenges and opportunities. J. Energy Storage 52 (104799), 1-30, 2022. https://doi. org/10.1016/j.est.2022.104799.
  • Batgi SU, Dincer I. Design of a two-renewable energy source-based system with thermal energy storage and hydrogen storage for sustainable development. Journal of Energy Storage, 89(111742), 2024.
  • Erdemir D, Dincer I. A new solar energy-based system integrated with hydrogen storage and heat recovery for sustainable community. Sustainable Energy Technologies and Assessments, 52(102355), 2022. https://doi.org/10.1016/j.seta.2022.102355.
  • Powell KM, Edgar TF. Modeling and control of a solar thermal power plant with thermal energy storage. Chem. Eng. Sci. 71 138–145, 2012. https://doi.org/ 10.1016/j.ces.2011.12.009.
  • Bellos E. Tzivanidis C. Belessiotis V. Daily performance of parabolic trough solar collectors. Solar Energy, 158, 663-678, 2017.
  • Bellos, E, Tzivanidis C. Enhancing the performance of evacuated and non-evacuated parabolic trough collectors using twisted tape inserts, perforated plate inserts and internally finned absorber. Energies, 11(5), 1-28, 2018.
  • Kizilkan O, Khanmohammadi S, Saadat-Targhi M. Solar based CO2 power cycle employing thermoelectric generator and absorption refrigeration: Thermodynamic assessment and multi-objective optimization. Energy conversion and management, 200(112072), 2019.
  • Bellos E, Tzivanidis C. Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors. Renewable Energy, 114, 1376-1393, 2017.
  • Zheng D, Wang J, Chen Z, Baleta J, Sundén B. Performance analysis of a plate heat exchanger using various nanofluids. International Journal of Heat and Mass Transfer, 158(119993), 2020.
  • Islam MS, Xu F, Saha SC. Thermal performance investigation in a novel corrugated plate heat exchanger. International journal of heat and mass transfer, 148(119095), 2020.
  • Meteonorm. https://meteonorm.com, (Erişim Tarihi: 31.12.2023).
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Solar Energy Systems
Journal Section Articles
Authors

Pervin Alptekin 0009-0002-8780-3836

Reşat Selbaş 0000-0003-4802-1831

Publication Date December 30, 2024
Submission Date July 3, 2024
Acceptance Date December 25, 2024
Published in Issue Year 2024 Volume: 16 Issue: 2

Cite

IEEE P. Alptekin and R. Selbaş, “Termal enerji depolamalı parabolik güneş kolektörünün termodinamik incelenmesi”, IJTS, vol. 16, no. 2, pp. 53–61, 2024, doi: 10.55974/utbd.1509902.

Dergi isminin Türkçe kısaltması "UTBD" ingilizce kısaltması "IJTS" şeklindedir.

Dergimizde yayınlanan makalelerin tüm bilimsel sorumluluğu yazar(lar)a aittir. Editör, yardımcı editör ve yayıncı dergide yayınlanan yazılar için herhangi bir sorumluluk kabul etmez.