Research Article
BibTex RIS Cite

Investigation of the effects of seasonal temperatures on ammonia-water absorption heat pumps for Isparta province

Year 2024, Volume: 16 Issue: 2, 44 - 52, 30.12.2024
https://doi.org/10.55974/utbd.1560981

Abstract

This study analyzes the performance of ammonia-water absorption heat pump systems for Isparta province. Considering the variable climate conditions of Isparta, the effects of seasonal temperatures on heat pump performance were investigated. In the study, it was observed that the ammonia-water absorption heat pump showed acceptable performance even at low outdoor temperatures, and the efficiency of the system increased as the temperature increased. While the COP (coefficient of performance) values were 0.7981 in January, they increased to 0.8138 in September. These results reveal that ammonia-water absorption heat pumps offer a suitable solution in terms of energy efficiency in regions with climatic differences such as Isparta. In addition, when compared with the studies in the literature, it is seen that this system provides reasonable efficiency at low temperatures. The general findings of the study show that ammonia-water absorption heat pumps provide reasonable performance at low temperatures, but operate more efficiently at high temperatures. In this context, it was concluded that these systems are a suitable option in terms of energy efficiency in regions with high seasonal temperature changes, such as Isparta.

References

  • Aman J, Ting DK, Henshaw P. Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system. Applied Thermal Engineering, 62(2), 424-432, 2014.
  • Aprile M, Scoccia R, Toppi T, Guerra M, Motta M. Modelling and experimental analysis of a GAX NH3–H2O gas-driven absorption heat pump. International Journal of Refrigeration, 66, 145-155, 2016.
  • Dehghan B, Toppi T, Aprile M, Motta M. Seasonal performance assessment of three alternative gas-driven absorption heat pump cycles. Journal of Building Engineering, 31, 101434, 2020.
  • Din I, Rosen MA. Thermal energy storage: systems and applications. John Wiley & Sons, 2011.
  • Ebrahimnataj Tiji A, Ramiar A, Ebrahimnataj M. Comparison the start-up time of the key parameters of aqua-ammonia and water–lithium bromide absorption chiller (AC) under different heat exchanger configurations. SN Applied Sciences, 2, 1-14, 2020.
  • Engler M, Grossman G, Hellmann HM. Comparative simulation and investigation of ammonia-water: absorption cycles for heat pump applications. International Journal of Refrigeration, 20(7), 504-516, 1997.
  • Famiglietti J, Toppi T, Pistocchini L, Scoccia R, Motta M. A comparative environmental life cycle assessment between a condensing boiler and a gas driven absorption heat pump. Science of the Total Environment, 762, 144392, 2021.
  • Fumagalli M, Sivieri A, Aprile M, Motta M, Zanchi M. Monitoring of gas driven absorption heat pumps and comparing energy efficiency on primary energy. Renewable Energy, 110, 115-125, 2017.
  • Gadalla MA, Ibrahim TA, Hassan MA. Performance characteristics of an ammonia–water absorption heat pump system. International Journal of Energy Research, 37(14), 1917-1927, 2013.
  • Grossman G, DeVault RC, Creswick FA. Simulation and performance analysis of an ammonia-water absorption heat pump based on the generator-absorber heat exchange (GAX) cycle. Oak Ridge National Lab., 1995.
  • Horuz I. A comparison between ammonia-water and water-lithium bromide solutions in vapor absorption refrigeration systems. International Communications in Heat and Mass Transfer, 25(5), 711-721, 1998.
  • Jensen JK, Markussen WB, Reinholdt L, Elmegaard B. Exergoeconomic optimization of an ammonia–water hybrid absorption–compression heat pump for heat supply in a spray-drying facility. International Journal of Energy and Environmental Engineering, 6, 195-211, 2015.
  • Khan MS, Kadam ST, Kyriakides AS, Hassan I, Papadopoulos AI, Rahman MA, Seferlis P. Comparative Energy and Exergy Analysis of Large Capacity Ammonia-Water and Water-Lithium Bromide Vapor Absorption Refrigeration (VAR) Cycles. ASME International Mechanical Engineering Congress and Exposition, Vol. 85673, V011T11A041, 2021.
  • Kurem E, Horuz I. A comparison between ammonia-water and water-lithium bromide solutions in absorption heat transformers. International Communications in Heat and Mass Transfer, 28(3), 427-438, 2001.
  • Lin P, Wang RZ, Xia ZZ, Ma Q. Experimental investigation on heat transportation over long distance by ammonia–water absorption cycle. Energy Conversion and Management, 50(9), 2331-2339, 2009.
  • Markmann B, Tokan T, Loth M, Stegmann J, Hartmann KH, Kruse H, Kabelac S. Experimental results of an absorption-compression heat pump using the working fluid ammonia/water for heat recovery in industrial processes. International Journal of Refrigeration, 99, 59-68, 2019.
  • Mirl N, Schmid F, Bierling B, Spindler K. Design and analysis of an ammonia-water absorption heat pump. Applied Thermal Engineering, 165, 114531, 2020.
  • Mumah SN, Adefila SS, Arinze EA. First law thermodynamic evaluation and simulation of ammonia-water absorption heat pump systems. Energy Conversion and Management, 35(8), 737-750, 1994.
  • Villa G, Toppi T, Aprile M, Motta M. Performance improvement of gas-driven absorption heat pumps by controlling the flow rate in the solution branch. International Journal of Refrigeration, 145, 290-300, 2023.
  • Wu T, Wu Y, Yu Z, Zhao H, Wu H. Experimental investigation on an ammonia–water–lithium bromide absorption refrigeration system without solution pump. Energy Conversion and Management, 52(5), 2314-2319, 2011.
  • Younes MB, Altork Y, Shaban NA. Performance Evaluation of a Small Scale Ammonia-Water Absorption Cooling System for Off-Grid Rural Homes: A Numerical and Experimental Study. International Journal of Heat & Technology, 42(1), 2024.
  • Zhou J, Li S. Simulation analysis of performance optimization of gas-driven ammonia-water absorption heat pump. Thermal Science, 24(6 Part B), 4253-4266, 2020.
  • Zotter G, Rieberer R. Experimental analysis of a novel concept of a “thermally driven” solution pump operating a small-capacity ammonia/water absorption heat pumping system. International Journal of Refrigeration, 60, 190-205, 2015.
  • Devlet Meteoroloji Genel Müdürlüğü. https://www.mgm.gov.tr/Veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=ISPARTA (Erişim Tarihi: 2024).
  • Klein SA. Engineering Equation Solver(EES), F-Chart Software, Version 10.835-3D. 2020

Isparta ili için amonyak-su absorpsiyonlu ısı pompaları üzerindeki mevsimsel sıcaklıkların etkilerinin araştırılması

Year 2024, Volume: 16 Issue: 2, 44 - 52, 30.12.2024
https://doi.org/10.55974/utbd.1560981

Abstract

Bu çalışma, Isparta ili için amonyak-su absorpsiyon ısı pompası sistemlerinin performansını analiz etmektedir. Isparta'nın değişken iklim koşulları dikkate alınarak, mevsimsel sıcaklıkların ısı pompası performansı üzerindeki etkileri incelenmiştir. Çalışmada, amonyak-su absorpsiyon ısı pompasının düşük dış ortam sıcaklıklarında dahi kabul edilebilir bir performans gösterdiği, sıcaklık arttıkça ise sistemin verimliliğinin arttığı gözlemlenmiştir. COP (performans katsayısı) değerleri Ocak ayında 0.7981 iken, Eylül ayında 0.8138'e kadar yükselmiştir. Bu sonuçlar, amonyak-su absorpsiyon ısı pompalarının Isparta gibi iklimsel farklılıklar gösteren bölgelerde enerji verimliliği açısından uygun bir çözüm sunduğunu ortaya koymaktadır. Ayrıca, literatürdeki çalışmalarla karşılaştırıldığında, bu sistemin düşük sıcaklıklarda da makul bir verimlilik sağladığı görülmektedir. Çalışmanın genel bulguları, amonyak-su absorpsiyon ısı pompalarının düşük sıcaklıklarda makul bir performans sunduğunu, ancak yüksek sıcaklıklarda daha verimli çalıştığını ortaya koymaktadır. Bu bağlamda, Isparta gibi mevsimsel sıcaklık değişikliklerinin yüksek olduğu bölgelerde bu sistemlerin enerji verimliliği açısından uygun bir seçenek olduğu sonucuna varılmıştır.

References

  • Aman J, Ting DK, Henshaw P. Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system. Applied Thermal Engineering, 62(2), 424-432, 2014.
  • Aprile M, Scoccia R, Toppi T, Guerra M, Motta M. Modelling and experimental analysis of a GAX NH3–H2O gas-driven absorption heat pump. International Journal of Refrigeration, 66, 145-155, 2016.
  • Dehghan B, Toppi T, Aprile M, Motta M. Seasonal performance assessment of three alternative gas-driven absorption heat pump cycles. Journal of Building Engineering, 31, 101434, 2020.
  • Din I, Rosen MA. Thermal energy storage: systems and applications. John Wiley & Sons, 2011.
  • Ebrahimnataj Tiji A, Ramiar A, Ebrahimnataj M. Comparison the start-up time of the key parameters of aqua-ammonia and water–lithium bromide absorption chiller (AC) under different heat exchanger configurations. SN Applied Sciences, 2, 1-14, 2020.
  • Engler M, Grossman G, Hellmann HM. Comparative simulation and investigation of ammonia-water: absorption cycles for heat pump applications. International Journal of Refrigeration, 20(7), 504-516, 1997.
  • Famiglietti J, Toppi T, Pistocchini L, Scoccia R, Motta M. A comparative environmental life cycle assessment between a condensing boiler and a gas driven absorption heat pump. Science of the Total Environment, 762, 144392, 2021.
  • Fumagalli M, Sivieri A, Aprile M, Motta M, Zanchi M. Monitoring of gas driven absorption heat pumps and comparing energy efficiency on primary energy. Renewable Energy, 110, 115-125, 2017.
  • Gadalla MA, Ibrahim TA, Hassan MA. Performance characteristics of an ammonia–water absorption heat pump system. International Journal of Energy Research, 37(14), 1917-1927, 2013.
  • Grossman G, DeVault RC, Creswick FA. Simulation and performance analysis of an ammonia-water absorption heat pump based on the generator-absorber heat exchange (GAX) cycle. Oak Ridge National Lab., 1995.
  • Horuz I. A comparison between ammonia-water and water-lithium bromide solutions in vapor absorption refrigeration systems. International Communications in Heat and Mass Transfer, 25(5), 711-721, 1998.
  • Jensen JK, Markussen WB, Reinholdt L, Elmegaard B. Exergoeconomic optimization of an ammonia–water hybrid absorption–compression heat pump for heat supply in a spray-drying facility. International Journal of Energy and Environmental Engineering, 6, 195-211, 2015.
  • Khan MS, Kadam ST, Kyriakides AS, Hassan I, Papadopoulos AI, Rahman MA, Seferlis P. Comparative Energy and Exergy Analysis of Large Capacity Ammonia-Water and Water-Lithium Bromide Vapor Absorption Refrigeration (VAR) Cycles. ASME International Mechanical Engineering Congress and Exposition, Vol. 85673, V011T11A041, 2021.
  • Kurem E, Horuz I. A comparison between ammonia-water and water-lithium bromide solutions in absorption heat transformers. International Communications in Heat and Mass Transfer, 28(3), 427-438, 2001.
  • Lin P, Wang RZ, Xia ZZ, Ma Q. Experimental investigation on heat transportation over long distance by ammonia–water absorption cycle. Energy Conversion and Management, 50(9), 2331-2339, 2009.
  • Markmann B, Tokan T, Loth M, Stegmann J, Hartmann KH, Kruse H, Kabelac S. Experimental results of an absorption-compression heat pump using the working fluid ammonia/water for heat recovery in industrial processes. International Journal of Refrigeration, 99, 59-68, 2019.
  • Mirl N, Schmid F, Bierling B, Spindler K. Design and analysis of an ammonia-water absorption heat pump. Applied Thermal Engineering, 165, 114531, 2020.
  • Mumah SN, Adefila SS, Arinze EA. First law thermodynamic evaluation and simulation of ammonia-water absorption heat pump systems. Energy Conversion and Management, 35(8), 737-750, 1994.
  • Villa G, Toppi T, Aprile M, Motta M. Performance improvement of gas-driven absorption heat pumps by controlling the flow rate in the solution branch. International Journal of Refrigeration, 145, 290-300, 2023.
  • Wu T, Wu Y, Yu Z, Zhao H, Wu H. Experimental investigation on an ammonia–water–lithium bromide absorption refrigeration system without solution pump. Energy Conversion and Management, 52(5), 2314-2319, 2011.
  • Younes MB, Altork Y, Shaban NA. Performance Evaluation of a Small Scale Ammonia-Water Absorption Cooling System for Off-Grid Rural Homes: A Numerical and Experimental Study. International Journal of Heat & Technology, 42(1), 2024.
  • Zhou J, Li S. Simulation analysis of performance optimization of gas-driven ammonia-water absorption heat pump. Thermal Science, 24(6 Part B), 4253-4266, 2020.
  • Zotter G, Rieberer R. Experimental analysis of a novel concept of a “thermally driven” solution pump operating a small-capacity ammonia/water absorption heat pumping system. International Journal of Refrigeration, 60, 190-205, 2015.
  • Devlet Meteoroloji Genel Müdürlüğü. https://www.mgm.gov.tr/Veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=ISPARTA (Erişim Tarihi: 2024).
  • Klein SA. Engineering Equation Solver(EES), F-Chart Software, Version 10.835-3D. 2020
There are 25 citations in total.

Details

Primary Language English
Subjects Energy, Renewable Energy Resources
Journal Section Articles
Authors

Ahmet Elbir 0000-0001-8934-7665

Publication Date December 30, 2024
Submission Date October 3, 2024
Acceptance Date December 9, 2024
Published in Issue Year 2024 Volume: 16 Issue: 2

Cite

IEEE A. Elbir, “Investigation of the effects of seasonal temperatures on ammonia-water absorption heat pumps for Isparta province”, IJTS, vol. 16, no. 2, pp. 44–52, 2024, doi: 10.55974/utbd.1560981.

Dergi isminin Türkçe kısaltması "UTBD" ingilizce kısaltması "IJTS" şeklindedir.

Dergimizde yayınlanan makalelerin tüm bilimsel sorumluluğu yazar(lar)a aittir. Editör, yardımcı editör ve yayıncı dergide yayınlanan yazılar için herhangi bir sorumluluk kabul etmez.