Review
BibTex RIS Cite
Year 2024, Volume: 7 Issue: 2, 127 - 147, 30.12.2024
https://doi.org/10.47137/uujes.1491731

Abstract

References

  • Kayacan, Ö., & Kurbak, A. (2010). Effect of garment design on liquid cooling garments. Textile Research Journal, 80(14), 1442-1
  • Karel Sima; Katerina Mouckova; Ales Hamacek; Radek Soukup; Petra Komarkova; Viera Glombikova 2020. “System for Testing and Evaluating the Thermal Comfort of Smart Textiles Clothing” 2020 43rd International Spring Seminar on Electronics Technology (ISSE)
  • Wang, F. 2008. “A comparative introduction on sweating thermal mannequin" Newton" and" Walter”, 7th International Thermal Mannequin and Modelling Meeting, University of Coimbra, Portugal., 19-29.
  • Psikuta, A., Allegrini, J., Koelblen, B., Bogdan, A., Annaheim, S., Martínez, N., Rossi, R. M. (2017). Thermal mannequins controlled by human thermoregulation models for energy efficiency and thermal comfort research–A review. Renewable and Sustainable Energy Reviews, 78, 1315-1330.
  • Abedin, F., & DenHartog, E. (2023). A new approach to demonstrate the exothermic behavior of textiles by using a thermal mannequin: Correction methods of mannequin model. Polymer Testing, 128, 108195.
  • Cao H., Branson, D.H., Peksöz, S., Nam, J., Farr, C.A. 2006. “Fabric selection for a liquid cooling garment” Textile Research Journal, 76.
  • Dionne J.-P., Semeniuk, K., Makris, A., Teal, W., Laprice, B.. 2003. “Thermal mannequin evaluation of liquid cooling garments intended for use in hazardous waste anagement” WM’03 Conference, Tucson, ABD.
  • Nam, J., Branson, D.H., Cao, H., Jin, B., Peksöz, S., Farr, C., Ashdown, S. 2005. “Fit analysis of liquid cooled vest prototypes using 3D body scanning technology” Journal of Textile, Apparel and Technology and Management, 4.
  • Nilsson, H.O. 2004. “Comfort Climate Evaluation with Thermal Mannequin Methods and Computer Simulation Models” 3rd ed.; National Institute for Working Life: Stockholm, Sweden
  • Drago¸s Daniel Ion-Gu¸ta, Ioan Ursu, Adrian Toader, Daniela Enciu, Paul Alexandru Danca, Ilinca Nastase, Cristiana Verona Croitoru, Florin Ioan Bode, Mihnea Sandu, 2002. “Advanced Thermal Mannequin for Thermal Comfort Assessment in Vehicles and Buildings”, Applied Science
  • Jambunathan, K.; Lai, E.; Moss, M.A.; Button, B.L. 1992. “A review of heat transfer data for single circular jet impingement.” Int. J. Heat Fluid Flow
  • Nayak, R.; Houshyar, S., 2017. “Comparison of mannequin tests with wearer trials. In Mannequins for Textile Evaluation” Woodhead Publishing: Sawston, UK
  • Georgescu, M. R., Cernei, A., Nastase, I., Danca, P., Guta, D., & Ursu, I. (2023, October). Development and Use of a New Architecture of Thermal Mannequin for Assessing Local Thermal Comfort. In 2023 11th International Conference on ENERGY and ENVIRONMENT (CIEM) (pp. 1-4). IEEE.
  • ISO 18640-1; Protective Clothing for Firefighters—Physiological Impact—Part 1: Measurement of Coupled Heat and Moisture Transfer with the Sweating Torso. International Organization for Standardization: Geneva, Switzerland, 2018.
  • ASTM F1291; Standard Test Method for Measuring the Thermal Insulation of Clothing Using a Heated Mannequin. ASTM International: London, UK, 2016.
  • ASTM F2370; Standard Test Method for Measuring the Evaporative Resistance of Clothing Using a Sweating Mannequin. ASTM International: London, UK, 2016.
  • Islam, M. R., Golovin, K., & Dolez, P. I. (2023). Clothing thermophysiological comfort: A textile science perspective. Textiles, 3(4), 353-407.
  • Anica Hursa Šajatovi, Sandra Flin cec Grgac, and Daniela Zavec, 2023. “Investigation of Flammability of Protective Clothing System for Firefighters” Book; Advanced Materials for Cloting and Textile Engineering, MDPI
  • Ankit Joshi, Shri H. Viswanathan, Ankush K. Jaiswal, Kambiz Sadeghi, Lyle Bartels, Rajan M. Jain, Gokul Pathikonda, Jennifer K. Vanos, Ariane Middel, Konrad Rykaczewski, 2024. “Characterization of human extreme heat exposure using an outdoor thermal mannequin”, Science of the Total Environment 923
  • Egeli, D., Oner, E., Seckin, A. C., & Seckin, M. (2022). Development of a Novel Thermal Mannequin System for Thermal Comfort Measurements. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 57, 89-96.
  • Wheldon, A. E. (1982). Energy balance in the newborn baby: use of a mannequin to estimate radiant and convective heat loss. Physics in Medicine & Biology, 27(2), 285.
  • Sarman, I., Bolin, D., Holmér, I., & Tunell, R. (1992). Assessment of thermal conditions in neonatal care: use of a mannequin of premature baby size. American journal of perinatology, 9(04), 239-246.
  • Belghazi, K., Tourneux, P., Elabbassi, E. B., Ghyselen, L., Delanaud, S., & Libert, J. P. (2006). Effect of posture on the thermal efficiency of a plastic bag wrapping in neonate: assessment using a thermal “sweating” mannequin. Medical physics, 33(3), 637-644.
  • Krucińska, I., Skrzetuska, E., & Kowalski, K. (2019). Application of a thermal mannequin to the assessment of the heat insulating power of protective garments for premature babies. Autex Research Journal, 19(2), 134-146.
  • Hannouch, A., Habchi, C., Metni, N., & Lemenand, T. (2023). Thermal analysis of a 3D printed thermal mannequin inside an infant incubator. International Journal of Thermal Sciences, 183, 107826.
  • Ostrowski, Z., & Rojczyk, M. (2018). Natural convection heat transfer coefficient for newborn baby: Thermal mannequin assessed convective heat loses. Heat and Mass Transfer, 54, 2395-2403.
  • Delanaud, S., Chahin Yassin, F., Durand, E., Tourneux, P., & Libert, J. P. (2019). Can mathematical models of body heat exchanges accurately predict thermal stress in premature neonates?. Applied Sciences, 9(8), 1541.
  • Aziza Hannouch, Charbel Habchi, Najib Metni, Thierry Lemenand, 2023. “Thermal analysis of a 3D printed thermal mannequin inside an infant incubator”, International Journal of Thermal Sciences.
  • Awais, M., Naveed, T., Hussain, F., Malik, S. A., Farooq, A., & Krzywinski, S. (2024). Simulation-based thermal analysis and validation of clothed thermal mannequin. Mehran University Research Journal Of Engineering & Technology, 43(1), 45-55.
  • Kaplan, S., & Karaman, C. (2019). Thermal comfort performances of cellulosic socks evaluated by a foot manikin system and moisture management tester. International Journal of Clothing Science and Technology, 31(2), 272-283.
  • West, A. M., Oberst, F., Tarrier, J., Heyde, C., Schlarb, H., Brüggemann, G. P., Havenith, G. (2023). A thermal foot manikin as a tool for footwear evaluation and development. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 237(1), 34-46.

Technological Developments in Thermal Mannequin Systems

Year 2024, Volume: 7 Issue: 2, 127 - 147, 30.12.2024
https://doi.org/10.47137/uujes.1491731

Abstract

Technological advancements in thermal mannequin systems have significantly contributed to the progress of wearable technology and the textile industry. These systems, utilized for testing and optimizing garment thermal properties, have undergone notable developments in recent years. Enhanced sensor technologies have enabled thermal mannequin systems to furnish more precise and accurate data, facilitating improved analysis of garment-body interaction. Moreover, refined mannequin designs now more accurately simulate real-world conditions, aiding in the assessment of garment performance. Furthermore, the integration of data analytics and artificial intelligence has emerged as a pivotal aspect, providing valuable insights for optimizing garment thermal performance. Overall, these technological advancements underscore the pivotal role of thermal mannequin systems in driving innovation in wearable technology and textile design, ultimately leading to the development of more functional and performance-oriented garments. The purpose of this article is to assemble the articles on thermal mannequin systems and briefly summarize the latest technological developments.

References

  • Kayacan, Ö., & Kurbak, A. (2010). Effect of garment design on liquid cooling garments. Textile Research Journal, 80(14), 1442-1
  • Karel Sima; Katerina Mouckova; Ales Hamacek; Radek Soukup; Petra Komarkova; Viera Glombikova 2020. “System for Testing and Evaluating the Thermal Comfort of Smart Textiles Clothing” 2020 43rd International Spring Seminar on Electronics Technology (ISSE)
  • Wang, F. 2008. “A comparative introduction on sweating thermal mannequin" Newton" and" Walter”, 7th International Thermal Mannequin and Modelling Meeting, University of Coimbra, Portugal., 19-29.
  • Psikuta, A., Allegrini, J., Koelblen, B., Bogdan, A., Annaheim, S., Martínez, N., Rossi, R. M. (2017). Thermal mannequins controlled by human thermoregulation models for energy efficiency and thermal comfort research–A review. Renewable and Sustainable Energy Reviews, 78, 1315-1330.
  • Abedin, F., & DenHartog, E. (2023). A new approach to demonstrate the exothermic behavior of textiles by using a thermal mannequin: Correction methods of mannequin model. Polymer Testing, 128, 108195.
  • Cao H., Branson, D.H., Peksöz, S., Nam, J., Farr, C.A. 2006. “Fabric selection for a liquid cooling garment” Textile Research Journal, 76.
  • Dionne J.-P., Semeniuk, K., Makris, A., Teal, W., Laprice, B.. 2003. “Thermal mannequin evaluation of liquid cooling garments intended for use in hazardous waste anagement” WM’03 Conference, Tucson, ABD.
  • Nam, J., Branson, D.H., Cao, H., Jin, B., Peksöz, S., Farr, C., Ashdown, S. 2005. “Fit analysis of liquid cooled vest prototypes using 3D body scanning technology” Journal of Textile, Apparel and Technology and Management, 4.
  • Nilsson, H.O. 2004. “Comfort Climate Evaluation with Thermal Mannequin Methods and Computer Simulation Models” 3rd ed.; National Institute for Working Life: Stockholm, Sweden
  • Drago¸s Daniel Ion-Gu¸ta, Ioan Ursu, Adrian Toader, Daniela Enciu, Paul Alexandru Danca, Ilinca Nastase, Cristiana Verona Croitoru, Florin Ioan Bode, Mihnea Sandu, 2002. “Advanced Thermal Mannequin for Thermal Comfort Assessment in Vehicles and Buildings”, Applied Science
  • Jambunathan, K.; Lai, E.; Moss, M.A.; Button, B.L. 1992. “A review of heat transfer data for single circular jet impingement.” Int. J. Heat Fluid Flow
  • Nayak, R.; Houshyar, S., 2017. “Comparison of mannequin tests with wearer trials. In Mannequins for Textile Evaluation” Woodhead Publishing: Sawston, UK
  • Georgescu, M. R., Cernei, A., Nastase, I., Danca, P., Guta, D., & Ursu, I. (2023, October). Development and Use of a New Architecture of Thermal Mannequin for Assessing Local Thermal Comfort. In 2023 11th International Conference on ENERGY and ENVIRONMENT (CIEM) (pp. 1-4). IEEE.
  • ISO 18640-1; Protective Clothing for Firefighters—Physiological Impact—Part 1: Measurement of Coupled Heat and Moisture Transfer with the Sweating Torso. International Organization for Standardization: Geneva, Switzerland, 2018.
  • ASTM F1291; Standard Test Method for Measuring the Thermal Insulation of Clothing Using a Heated Mannequin. ASTM International: London, UK, 2016.
  • ASTM F2370; Standard Test Method for Measuring the Evaporative Resistance of Clothing Using a Sweating Mannequin. ASTM International: London, UK, 2016.
  • Islam, M. R., Golovin, K., & Dolez, P. I. (2023). Clothing thermophysiological comfort: A textile science perspective. Textiles, 3(4), 353-407.
  • Anica Hursa Šajatovi, Sandra Flin cec Grgac, and Daniela Zavec, 2023. “Investigation of Flammability of Protective Clothing System for Firefighters” Book; Advanced Materials for Cloting and Textile Engineering, MDPI
  • Ankit Joshi, Shri H. Viswanathan, Ankush K. Jaiswal, Kambiz Sadeghi, Lyle Bartels, Rajan M. Jain, Gokul Pathikonda, Jennifer K. Vanos, Ariane Middel, Konrad Rykaczewski, 2024. “Characterization of human extreme heat exposure using an outdoor thermal mannequin”, Science of the Total Environment 923
  • Egeli, D., Oner, E., Seckin, A. C., & Seckin, M. (2022). Development of a Novel Thermal Mannequin System for Thermal Comfort Measurements. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 57, 89-96.
  • Wheldon, A. E. (1982). Energy balance in the newborn baby: use of a mannequin to estimate radiant and convective heat loss. Physics in Medicine & Biology, 27(2), 285.
  • Sarman, I., Bolin, D., Holmér, I., & Tunell, R. (1992). Assessment of thermal conditions in neonatal care: use of a mannequin of premature baby size. American journal of perinatology, 9(04), 239-246.
  • Belghazi, K., Tourneux, P., Elabbassi, E. B., Ghyselen, L., Delanaud, S., & Libert, J. P. (2006). Effect of posture on the thermal efficiency of a plastic bag wrapping in neonate: assessment using a thermal “sweating” mannequin. Medical physics, 33(3), 637-644.
  • Krucińska, I., Skrzetuska, E., & Kowalski, K. (2019). Application of a thermal mannequin to the assessment of the heat insulating power of protective garments for premature babies. Autex Research Journal, 19(2), 134-146.
  • Hannouch, A., Habchi, C., Metni, N., & Lemenand, T. (2023). Thermal analysis of a 3D printed thermal mannequin inside an infant incubator. International Journal of Thermal Sciences, 183, 107826.
  • Ostrowski, Z., & Rojczyk, M. (2018). Natural convection heat transfer coefficient for newborn baby: Thermal mannequin assessed convective heat loses. Heat and Mass Transfer, 54, 2395-2403.
  • Delanaud, S., Chahin Yassin, F., Durand, E., Tourneux, P., & Libert, J. P. (2019). Can mathematical models of body heat exchanges accurately predict thermal stress in premature neonates?. Applied Sciences, 9(8), 1541.
  • Aziza Hannouch, Charbel Habchi, Najib Metni, Thierry Lemenand, 2023. “Thermal analysis of a 3D printed thermal mannequin inside an infant incubator”, International Journal of Thermal Sciences.
  • Awais, M., Naveed, T., Hussain, F., Malik, S. A., Farooq, A., & Krzywinski, S. (2024). Simulation-based thermal analysis and validation of clothed thermal mannequin. Mehran University Research Journal Of Engineering & Technology, 43(1), 45-55.
  • Kaplan, S., & Karaman, C. (2019). Thermal comfort performances of cellulosic socks evaluated by a foot manikin system and moisture management tester. International Journal of Clothing Science and Technology, 31(2), 272-283.
  • West, A. M., Oberst, F., Tarrier, J., Heyde, C., Schlarb, H., Brüggemann, G. P., Havenith, G. (2023). A thermal foot manikin as a tool for footwear evaluation and development. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 237(1), 34-46.
There are 31 citations in total.

Details

Primary Language English
Subjects Textile Quality Control, Textile Sciences and Engineering (Other)
Journal Section Articles
Authors

Muge Ozyunlu This is me 0009-0001-9721-0236

Eren Oner 0000-0003-2770-414X

Publication Date December 30, 2024
Submission Date May 30, 2024
Acceptance Date December 9, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Ozyunlu, M., & Oner, E. (2024). Technological Developments in Thermal Mannequin Systems. Usak University Journal of Engineering Sciences, 7(2), 127-147. https://doi.org/10.47137/uujes.1491731
AMA Ozyunlu M, Oner E. Technological Developments in Thermal Mannequin Systems. UUJES. December 2024;7(2):127-147. doi:10.47137/uujes.1491731
Chicago Ozyunlu, Muge, and Eren Oner. “Technological Developments in Thermal Mannequin Systems”. Usak University Journal of Engineering Sciences 7, no. 2 (December 2024): 127-47. https://doi.org/10.47137/uujes.1491731.
EndNote Ozyunlu M, Oner E (December 1, 2024) Technological Developments in Thermal Mannequin Systems. Usak University Journal of Engineering Sciences 7 2 127–147.
IEEE M. Ozyunlu and E. Oner, “Technological Developments in Thermal Mannequin Systems”, UUJES, vol. 7, no. 2, pp. 127–147, 2024, doi: 10.47137/uujes.1491731.
ISNAD Ozyunlu, Muge - Oner, Eren. “Technological Developments in Thermal Mannequin Systems”. Usak University Journal of Engineering Sciences 7/2 (December 2024), 127-147. https://doi.org/10.47137/uujes.1491731.
JAMA Ozyunlu M, Oner E. Technological Developments in Thermal Mannequin Systems. UUJES. 2024;7:127–147.
MLA Ozyunlu, Muge and Eren Oner. “Technological Developments in Thermal Mannequin Systems”. Usak University Journal of Engineering Sciences, vol. 7, no. 2, 2024, pp. 127-4, doi:10.47137/uujes.1491731.
Vancouver Ozyunlu M, Oner E. Technological Developments in Thermal Mannequin Systems. UUJES. 2024;7(2):127-4.

An international scientific e-journal published by the University of Usak