Araştırma Makalesi
BibTex RIS Kaynak Göster

FARKLI HAYVAN GÜBRELERİNİN KOMPOSTLANMASI

Yıl 2022, , 437 - 452, 30.04.2022
https://doi.org/10.17482/uumfd.1035975

Öz

Bu çalışmada, büyükbaş hayvan gübresi (BHG), at gübresi (AG) ve tavuk gübresinin (TG) kompostlanabilirliği araştırılmıştır. Kompost deneylerinde ayçiçeği sapı (AS), düzenleyici katkı maddesi olarak kullanılmış ve üç farklı reaktör (G1, G2, G3) çalıştırılmıştır. Tüm reaktörlerde %80 oranında hayvan gübresi, %20 oranında AS karıştırılmıştır. G1 reaktörüne hayvan gübresi olarak BHG, G2 reaktörüne AG ve G3 reaktörüne ise TG ilave edilmiştir. Proses 21 gün boyunca devam etmiş olup sıcaklık, pH, elektriksel iletkenlik, organik madde, nem, C/N oranı, Toplam Kjeldahl Azotu ve Toplam Fosfor parametreleri izlenmiştir. G1, G2 ve G3 reaktörlerinde süreç boyunca en yüksek sıcaklıklar sırasıyla 58,7 ˚C, 44,6 ˚C ve 54 ˚C olarak tespit edilmiştir. G1 reaktöründe, diğer reaktörlere göre en yüksek C/N oranı azalması (%42,4), en fazla OM kaybı (%57) gerçekleşmiş ve en yüksek sıcaklığa (58,7 ˚C) ulaşılmıştır. Reaktörler arasında en yüksek mineralizasyonun gerçekleştiği en verimli reaktörün G1 olduğu belirlenmiştir. Farklı karakteristik özelliklere sahip hayvan gübrelerinin kompostlanabilirlikleri incelendiğinde, en yüksek verimlilik BHG ile çalıştırılan G1 reaktöründe, onu takiben TG kullanılan G3 reaktöründe elde edilmiş olup en düşük verim AG’nin kullanıldığı G2 rektöründe elde edilmiştir. Farklı katkı maddeleri ve farklı karışım reçetelerinde hayvan gübreleri ile daha yüksek verimde kompost reaktörleri çalıştırılabileceği düşünülmektedir.

Kaynakça

  • 1. Afonso, S., Arrobas, M., Pereira, E.L. ve Rodrigues, M.A. (2021) Recycling nutrient-rich hop leaves by composting with wheat straw and farmyard manure in suitable mixtures, Journal of Environmental Management, 284, 112105. doi:10.1016/j.jenvman.2021.112105
  • 2. APHA, AWWA, WEF, (1998) Standard methods for the examination of water and wastewater, Washington, D.C.
  • 3. Barrington, S., Choiniere, D., Trigui, M. ve Knight W. (2002) Effect of carbon source on compost nitrogen and carbon losses, Bioresource Technology, 83(3),189-194. doi: 10.1016/S0960-8524(01)00229-2
  • 4. Bernal, M.P., Alburquerque, J.A. ve Moral, R. (2009) Composting of animal manures and chemical criteria for compost maturity assessment. A review, Bioresource Technology, 5444-5453. doi:10.1016/j.biortech.2008.11.027
  • 5. Bremner, J.M. ve Mulvaney, C.S. (1982) Methods of soil analysis, part 2 chemical and microbiological properties, 594-624.
  • 6. Chan, M.T., Selvam, A. ve Wong, J.W.C. (2016) Reducing nitrogen loss and salinity during ‘struvite’ food waste composting by zeolite amendment, Bioresource Technology, 200, 838-844. doi:10.1016/j.biortech.2015.10.093
  • 7. Chen, Z. ve Jiang, X. (2014) Microbiological safety of chicken litter or chicken litter-based organic fertilizers: A Review, Agriculture, 4(1), 1-29. doi:10.3390/agriculture4010001
  • 8. Chen, W., Liao, X., Wu, Y., Liang, J.B., Mi, J., Huang, J., Zhang, H., Wu, Y., Qiao, Z., Li, X. ve Wang, Y. (2017) Effects of different types of biochar on methane and ammonia mitigation during layer manure composting, Waste Management, 61, 506-515. doi: 10.1016/j.wasman.2017.01.014
  • 9. Chen, Y., Chen, Y., Li, Y., Wu, Y., Zeng, Z., Xu, R., Wang, S., Li, H. ve Zhang, J. (2019) Changes of heavy metal fractions during co-composting of agricultural waste and river sediment with inoculation of phanerochaete chrysosporium, Journal of Hazardous Materials, 378, 120757. doi:10.1016/j.jhazmat.2019.120757
  • 10. Chung, W.J., Chang, S.W., Chaudhary, D.K., Shin, J., Kim, H., Karmegam, N., Govarthanan, M., Chandrasekaran, M. ve Ravindran, B. (2021) Effect of biochar amendment on compost quality, gaseous emissions and pathogen reduction during in-vessel composting of chicken manure, Chemosphere, 283, 131129. doi:10.1016/j.chemosphere.2021.131129
  • 11. Dai, X., Wang, X., Gu, J., Bao, J., Wang, J., Guo, H., Yu, J., Zhao, W. ve Lei, L. (2021) Responses of bacterial communities and antibiotic resistance genes to nano-cellulose addition during pig manure composting, Journal of Environmental Management, 300, 113734. doi:10.1016/j.jenvman.2021.113734
  • 12. Dhyani, V., Awasthi, M.K., Wang,Q., Kumar, J., Ren, X., Zhao, J., Chen, H., Wang, M., Bhaskar, T. ve Zhang, Z. (2018) Effect of composting on the thermal decomposition behavior and kinetic parameters of pig manure-derived solid waste, Bioresource Technology, 252, 59-65. doi:10.1016/j.biortech.2017.12.083
  • 13. Diaz, L.F., Bertoldi, M., Bidlingmaier, W. ve Stentiford, E. (2007) Compost Science and Technology, Elsevier Publishers.
  • 14. Dietrich, M., Fongen, M. ve Foereid B. (2021) Anaerobic digestion affecting nitrous oxide and methane emissions from the composting process, Bioresource Technology Reports, 15(6), 100752. doi: 10.1016/j.biteb.2021.100752
  • 15. Dui-an, L.Ü.,Yan, B., Wang, L., Deng, Z. ve Zhang, Y. (2013) Changes in phosphorus fractions and nitrogen forms during composting of pig manure with rice straw, Journal of Integrative Agriculture, 12(10), 1855-1864. doi:10.1016/S2095-3119(13)60400-1
  • 16. Ezemagu, I. G., Ejimofor, M. I., Mekiti, M. C., ve Diyoke, C. (2021) Biofertilizer production via composting of digestate obtained from anaerobic digestion of post biocoagulation sludge blended with saw dust: physiochemical characterization and kinetic study, Environmental Challenges, 5, 100288. doi: 10.1016/j.envc.2021.100288
  • 17. Forbes, M.G., Dickson, K.L., Saleh, F., Waller, W.T., Doyle, R.D. ve Hudak, P. (2005) Recovery and fractionation of phosphorus retained by lightweight expanded shale and masonry sand used as media in subsurface flow treatment wetlands, Environmental Science & Technology, 39(12), 4621-4627. doi:10.1021/es048149o
  • 18. Ge, M., Shen, Y., Ding, J., Meng, H., Zhou, H., Zhou, J., Cheng, H., Zhang, X., Wang, J., Wang, H., Cheng, Q., Li, R. ve Liu, J. (2022) New insight into the impact of moisture content and pH on dissolved organic matter and microbial dynamics during cattle manure composting, Bioresource Technology, 344, 126236. doi:10.1016/j.biortech.2021.126236
  • 19. Gigliotti, G., Proietti, P., Said-Pullicino, D., Nasini, L., Pezzolla, D., Rosati, L. Ve Porceddu, P.R. (2012) Co-composting of olive husks with high moisture contents: organic matter dynamics and compost quality, International Biodeterioration & Biodegradation, 67, 8-14. doi:10.1016/j.ibiod.2011.11.009
  • 20. Haouas, A., Modafar, C.E., Douira, A., Ibnsouda-Koraichi, S., Filali-Maltouf, A., Moukhli, A. ve Amir, S. (2021) Evaluation of the nutrients cycle, humification process, and agronomic efficiency of organic wastes composting enriched with phosphate sludge, Journal of Cleaner Production, 302, 127051. doi:10.1016/j.jclepro.2021.127051
  • 21. Hebert, L., Cauchard, J., Doligez, P., Quitard, L., Laugier, C. ve Petry, S. (2010) Viability of Rhodococcus equi and Parascaris equorum eggs exposed to high temperatures, Current Microbiology, 60, 38-41. doi:10.1007/s00284-009-9497-5
  • 22. Iqbal, M.K., Shafiq, T. ve Ahmed, K. (2010) Characterization of bulking agents and its effects on physical properties of compost, Bioresource Technology, 101(6), 1913-1919. doi: 10.1016/j.biortech.2009.10.030
  • 23. Khalil, A.I, Hassouna, M.S., El-Ashqar, H.M.A. ve Fawzi, M. (2011) Changes in physical,chemical and microbial parameters during the composting of municipal sewage sludge, World Journal of Microbiology and Biotechnology, 27(10), 2359–2369. doi: 10.1007/s11274-011- 07048
  • 24. Khan, E., Khaodhir, S. ve Ruangrote, D. (2009) Effects of moisture content and initial pH in composting process on heavy metal removal characteristics of grass clipping compost used for stormwater filtration, Bioresource Technology, 100(19), 4454-4461. doi:10.1016/j.biortech.2008.12.062
  • 25. Komiyama, T. ve Ito, T. (2019) The characteristics of phosphorus in animal manure composts, Soil Science and Plant Nutrition, 65(3), 281-288. doi:10.1080/00380768.2019.1615384
  • 26. KT, 05.03.2015 tarihli ve 29286 sayılı Resmi Gazete, Kompost Tebliği.
  • 27. Lalremruati, M. ve Devi, A.S. (2021) Changes in physico-chemical properties during composting of three common household organic solid wastes amended with garden soil, Bioresource Technology Reports, 15, 100727. doi:10.1016/j.biteb.2021.100727
  • 28. Li, H., Wang, Y., Shi, L.Q., Mi, J., Song, D. ve Pan, X.J. (2012) Distribution and fractions of phosphorus and nitrogen in surface sediments from Dianchi Lake, China, International Journal of Environmental Research, 6(1), 195-208. doi:10.22059/IJER.2011.486
  • 29. Li, J., Akdeniz, N., Kim., H.H.M., Gates, R.S., Wang, X. ve Wang, K. (2021a) Quantification of sustainable animal manure utilization strategies in Hangzhou, China, Agricultural Systems, 191, 103150. doi:10.1016/j.agsy.2021.103150
  • 30. Li, M.X., He, X.S., Tang, J., Li, X., Zhao, R., Tao, Y.Q., Wang, C. ve Qiu, Z.P. (2021b) Influence of moisture content on chicken manure stabilization during microbial agent enhanced composting, Chemosphere, 364, 128549. doi: 10.1016/j.chemosphere.2020.128549
  • 31. Liao, H., Zhao, Q., Cui, P., Chen, Z., Yu, Z., Geisen, S., Friman, V.P. ve Zhou, S. (2019) Efficient reduction of antibiotic residues and associated resistance genes in tylosin antibiotic fermentation waste using hyperthermophilic composting, Environment International, 133(B), 105203. doi: 10.1016/j.envint.2019.105203
  • 32. Liu, B., Yu, K., Ahmed, I., Gin, K., Xi, B., Wei, Z., He, Y. ve Zhang, B. (2021) Key factors driving the fate of antibiotic resistance genes and controlling strategies during aerobic composting of animal manure: A review, Science of The Total Environment, 791, 148372. doi: 10.1016/j.scitotenv.2021.148372
  • 33. Manu, M.K., Kumar, R. ve Garg, A. (2017) Performance assessment of improved composting system for food waste with varying aeration and use of microbial inoculum, Bioresource Technology, 234, 167-17. doi:10.1016/j.biortech.2017.03.023
  • 34. Mclean, E.O. (1982) Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America.
  • 35. Nakasaki, K., Hirai, H., Mimoto, H., Quyen, T. N. M., Koyama, M., ve Takeda, K. (2019) Succession of microbial community during vigorous organic matter degradation in the primary fermentation stage of food waste composting, Science of The Total Environment, 671, 1237-1244. doi:10.1016/j.scitotenv.2019.03.341
  • 36. Okalebo, J.R., Gathua, K.W. ve Woomer, P.L. (1993) Laboratory Methods of Soil and Plant Analysis : A Working Manual, Tropical Soil Biology and Fertility Programme, Nairobi.
  • 37. Olsen, S.R., Cole, C.V. ve Watanabe, F.S. (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate, Colorado Agricultural Experiment Station Scientific Journal Series, 418, 18-19.
  • 38. Özlü, E., Sandhu, S.S., Kumar, S. ve Arriaga, F.J. (2019) Soil health indicators impacted by long-term cattle manure and inorganic fertilizer application in a corn-soybean rotation of South Dakota, Scientific Reports 9, 11776. doi:10.1038/s41598-019-48207-z
  • 39. Raj D. ve Antil, R. S. (2011) Evulation of maturity and stability parameters of composts prepared from agro-industrial wastes, Bioresource Technology, 102(3), 2868-2873. doi:10.106/j.biortech.2010.1.077
  • 40. Rhoades, J.D. (1982) Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America.
  • 41. Said-Pullicino, D., Erriquens, F.G. ve Gigliotti, G. (2007) Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity, Bioresource Technology, 98, 1822-1831. doi:10.1016/j.biortech.2006.06.018
  • 42. Sanchez-Monedero, M.A., Roig, A., Paredes, C. ve Bernal, M.P. (2001) Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures, Bioresource Technology, 78(3), 301-308. doi:10.1016/S0960-8524(01)00031-1
  • 43. Shan, G., Li, W., Gao, Y., Tan, W. ve Xi, B. (2021) Additives for reducing nitrogen loss during composting: A review, Journal of Cleaner Production, 307(10), 127308. doi: 10.1016/j.jclepro.2021.127308
  • 44. Song, B., Manu, M.K., Li, D., Wang, C., Varjani, S., Ladumor, N., Michael, L., Xu, Y. ve Wong, J.W.C. (2021) Food waste digestate composting: feedstock optimization with sawdust and mature compost, Bioresource Technology, 341, 125759. doi: 10.1016/j.biortech.2021.125759
  • 45. Sun, W., Huang, G.H., Zeng, G., Qin, X. ve Yu, H. (2011) Quantitative effects of composting state variables on C/N ratio through GA-aided multivariate analysis, Science of The Total Environment, 409(7), 1243-1254. doi:10.1016/j.scitotenv.2010.12.023
  • 46. Sundberg, C., Smars, S. ve Jönsson, H. (2004) Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting, Bioresource Technology, 95(2), 145-150. doi:10.1016/j.biortech.2004.01.016
  • 47. Şevik, F., Tosun, İ. Ve Ekinci, K. (2018) The effect of FAS and C/N ratios on co-composting of sewage sludge, dairy manure and tomato stalks, Waste Management, 80, 450-456. doi:10.1016/j.wasman.2018.07.051
  • 48. Thomas, C., Idler, C., Ammon, C. ve Amon T. (2020) Effects of the C/N ratio and moisture content on the survival of ESBL-producing Escherichia coli during chicken manure composting, Waste Management, 105, 110-118. doi: 10.1016/j.wasman.2020.01.031
  • 49. TÜİK (2020) Hayvansal Üretim İstatistikleri, Türkiye İstatistik Kurumu, https://data.tuik.gov.tr/Bulten/Index?p=Hayvansal-Uretim-Istatistikleri-Aralik-2020-37207
  • 50. Uçaroğlu, S. (2014) Use of sunflower stalks as a bulking agent in sewage sludge composting, Fresenius Environmental Bulletin, 23(6), 1302-1308. doi:10.3291/F-2013-546pj2014
  • 51. USEPA. (1993) Standards fort he use and Disposal of Sewage, 40 CFR Parts 257, 403, and 503 (FRO-4203-3), Final Rule, Fed. Register, 58, 9248, US Government Printing Office, Washington, DC.
  • 52. Wang, L., Li, Y., Prasher, S.O., Yan, B., Ou, Y., Cui, H. ve Cui, Y. (2019) Organic matter, a critical factor to immobilize phosphorus, copper, and zinc during composting under various initial C/N ratios, Bioresource Technology, 289, 121745. doi:10.1016/j.biortech.2019.121745
  • 53. Wang, G., Kong, Y., Liu, Y., Li, D., Zhang, X., Yuan, J. ve Li, G. (2020) Evolution of phytotoxicity during the active phase of co-composting of chicken manure, tobacco powder and mushroom substrate, Waste Management, 114, 25-32. doi:10.1016/j.wasman.2020.06.034
  • 54. Wang, L., Zheng, J. ve Huang, X. (2021) Co-composting materials can further affect the attenuation of antibiotic resistome in soil application, Waste Management, 135, 329-337. doi:10.1016/j.wasman.2021.09.016
  • 55. Waskom, R.M. (1999) Best management practices for manure utilization, 568A, Colorado State University Cooperative Extension, Fort Collins
  • 56. Wei, L., Shutao, W., Jin, Z. ve Tong, X. (2014) Biochar influences the microbial community structure during tomato stalk composting with chicken manure, Bioresource Technology, 154, 148-154. doi:10.1016/j.biortech.2013.12.022
  • 57. Wei, Y., Liang Z. ve Zhang Y. (2022) Evolution of physicochemical properties and bacterial community in aerobic composting of swine manure based on a patent compost tray, Bioresourca Technology, 343, 126136. doi:10.1016/j.bitech.2021.126136
  • 58. Wong, J.W.C., Karthikeyan, O.P. ve Selvam, A. (2017) Biological nutrient transformation during composting of pig manure and paper waste, Environmental Technology, 38(6), 745-761. doi: 10.1080/09593330.2016.1211747
  • 59. Wu, X., Wang, J., Shen, L., Wu, X., Amanze, C. ve Zeng, W. (2021) ) Effect of bamboo sphere amendment on the organic matter decomposition and humification of food waste composting, Waste Management, 133, 19-27. doi:10.1016/J.wasman.2021.07.030
  • 60. Yan, Z., Song, Z., Li, D., Yuan, Y., Liu, X. Ve Zheng, T. (2015) The effects of initial substrate concentration, C/N ratio, and temperature on solid-state anaerobic digestion from composting rice straw, Bioresource Technology, 177, 266-273. doi:10.1016/j.biortech.2014.11.089
  • 61. Yu, H., Xie, B., Khan, R. ve Shen, G. (2019) The changes in carbon, nitrogen components and humic substances during organic-inorganic aerobic co-composting, Bioresource Technology, 271, 228-235. doi:10.1016/j.biortech.2018.09.088
  • 62. Zhang, X., Fang, Q., Zhang, T., Ma, W., Velthof, G.L., Hou, Y., Oenema, O. ve Zhang, F. (2020) Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis, Global Change Biology, 26(2), 888-900. doi:10.1111/gcb.14826
  • 63. Zhen, X. F., Luo, M., Dong, H. Y., Li, S. B., Li, M. C., ve Kang, J. (2021) Variations of N-P-K contents in livestock and livestock manure composting. Applied Ecology And Envıronmental Research, 19(1), 249-261. doi:10.15666/aeer/1901_249261
  • 64. Zhu, P., Qin, H., Zhang, H., Luo, Y., Ru, Y., Li, J., San, K.W., Wang, L., Yu, X. ve Guo, W. (2021) Variations in antibiotic resistance genes and removal mechanisms induced by C/N ratio of substrate during composting, Science of The Total Environment, 798, 149288. doi:10.1016/j.scitotenv.2021.149288
  • 65. Zorpas, A.A., Arapoglou, D. ve Panagiotis, K. (2003) Waste paper and clinoptilolite as a bulking material with dewatered anaerobically stabilized primary sewage sludge (DASPSS) for compost production, Waste Management, 23(1), 27-35. doi:10.1016/S0956-053X(02)00042-9

Composting of Different Animal Manures

Yıl 2022, , 437 - 452, 30.04.2022
https://doi.org/10.17482/uumfd.1035975

Öz

In this study, the compostability of cattle manure (CAM), horse manure (HM) and chicken manure (CM) was investigated. In the compost experiments, sunflower stalk (SS) was used as a bulking agent and three different reactors (G1, G2, G3) were operated. In all reactors, 80% of animal manure and 20% of SS were mixed. CAM was added to the G1 reactor, HM to the G2 reactor and CM to the G3 reactor as animal manure. Temperature, pH, electrical conductivity, organic matter, moisture, C/N ratio, total kjeldahl nitrogen and total phosphorus were monitored during the 21-day process. The highest temperatures during the composting process were determined as 58.7 ˚C, 44.6 ˚C and 54 ˚C in the G1, G2 and G3 reactors, respectively. In the G1 reactor, the highest C/N ratio decrease (42.4%), the highest OM loss (57%) was occurred and the highest temperature (58.7 ˚C) was reached compared to other reactors. It was determined that the most efficient reactor with the highest mineralization was found to be G1 among the reactors. When the compostability of animal manures with different characteristics were examined, the highest efficiency was obtained in the G1 reactor operated with CAM, followed by the G3 reactor using CM, and the lowest efficiency was obtained in the G2 reactor where HM was used. It is thought that higher efficiency compost reactors can be operated with different bulking agents and different mixture recipes.

Kaynakça

  • 1. Afonso, S., Arrobas, M., Pereira, E.L. ve Rodrigues, M.A. (2021) Recycling nutrient-rich hop leaves by composting with wheat straw and farmyard manure in suitable mixtures, Journal of Environmental Management, 284, 112105. doi:10.1016/j.jenvman.2021.112105
  • 2. APHA, AWWA, WEF, (1998) Standard methods for the examination of water and wastewater, Washington, D.C.
  • 3. Barrington, S., Choiniere, D., Trigui, M. ve Knight W. (2002) Effect of carbon source on compost nitrogen and carbon losses, Bioresource Technology, 83(3),189-194. doi: 10.1016/S0960-8524(01)00229-2
  • 4. Bernal, M.P., Alburquerque, J.A. ve Moral, R. (2009) Composting of animal manures and chemical criteria for compost maturity assessment. A review, Bioresource Technology, 5444-5453. doi:10.1016/j.biortech.2008.11.027
  • 5. Bremner, J.M. ve Mulvaney, C.S. (1982) Methods of soil analysis, part 2 chemical and microbiological properties, 594-624.
  • 6. Chan, M.T., Selvam, A. ve Wong, J.W.C. (2016) Reducing nitrogen loss and salinity during ‘struvite’ food waste composting by zeolite amendment, Bioresource Technology, 200, 838-844. doi:10.1016/j.biortech.2015.10.093
  • 7. Chen, Z. ve Jiang, X. (2014) Microbiological safety of chicken litter or chicken litter-based organic fertilizers: A Review, Agriculture, 4(1), 1-29. doi:10.3390/agriculture4010001
  • 8. Chen, W., Liao, X., Wu, Y., Liang, J.B., Mi, J., Huang, J., Zhang, H., Wu, Y., Qiao, Z., Li, X. ve Wang, Y. (2017) Effects of different types of biochar on methane and ammonia mitigation during layer manure composting, Waste Management, 61, 506-515. doi: 10.1016/j.wasman.2017.01.014
  • 9. Chen, Y., Chen, Y., Li, Y., Wu, Y., Zeng, Z., Xu, R., Wang, S., Li, H. ve Zhang, J. (2019) Changes of heavy metal fractions during co-composting of agricultural waste and river sediment with inoculation of phanerochaete chrysosporium, Journal of Hazardous Materials, 378, 120757. doi:10.1016/j.jhazmat.2019.120757
  • 10. Chung, W.J., Chang, S.W., Chaudhary, D.K., Shin, J., Kim, H., Karmegam, N., Govarthanan, M., Chandrasekaran, M. ve Ravindran, B. (2021) Effect of biochar amendment on compost quality, gaseous emissions and pathogen reduction during in-vessel composting of chicken manure, Chemosphere, 283, 131129. doi:10.1016/j.chemosphere.2021.131129
  • 11. Dai, X., Wang, X., Gu, J., Bao, J., Wang, J., Guo, H., Yu, J., Zhao, W. ve Lei, L. (2021) Responses of bacterial communities and antibiotic resistance genes to nano-cellulose addition during pig manure composting, Journal of Environmental Management, 300, 113734. doi:10.1016/j.jenvman.2021.113734
  • 12. Dhyani, V., Awasthi, M.K., Wang,Q., Kumar, J., Ren, X., Zhao, J., Chen, H., Wang, M., Bhaskar, T. ve Zhang, Z. (2018) Effect of composting on the thermal decomposition behavior and kinetic parameters of pig manure-derived solid waste, Bioresource Technology, 252, 59-65. doi:10.1016/j.biortech.2017.12.083
  • 13. Diaz, L.F., Bertoldi, M., Bidlingmaier, W. ve Stentiford, E. (2007) Compost Science and Technology, Elsevier Publishers.
  • 14. Dietrich, M., Fongen, M. ve Foereid B. (2021) Anaerobic digestion affecting nitrous oxide and methane emissions from the composting process, Bioresource Technology Reports, 15(6), 100752. doi: 10.1016/j.biteb.2021.100752
  • 15. Dui-an, L.Ü.,Yan, B., Wang, L., Deng, Z. ve Zhang, Y. (2013) Changes in phosphorus fractions and nitrogen forms during composting of pig manure with rice straw, Journal of Integrative Agriculture, 12(10), 1855-1864. doi:10.1016/S2095-3119(13)60400-1
  • 16. Ezemagu, I. G., Ejimofor, M. I., Mekiti, M. C., ve Diyoke, C. (2021) Biofertilizer production via composting of digestate obtained from anaerobic digestion of post biocoagulation sludge blended with saw dust: physiochemical characterization and kinetic study, Environmental Challenges, 5, 100288. doi: 10.1016/j.envc.2021.100288
  • 17. Forbes, M.G., Dickson, K.L., Saleh, F., Waller, W.T., Doyle, R.D. ve Hudak, P. (2005) Recovery and fractionation of phosphorus retained by lightweight expanded shale and masonry sand used as media in subsurface flow treatment wetlands, Environmental Science & Technology, 39(12), 4621-4627. doi:10.1021/es048149o
  • 18. Ge, M., Shen, Y., Ding, J., Meng, H., Zhou, H., Zhou, J., Cheng, H., Zhang, X., Wang, J., Wang, H., Cheng, Q., Li, R. ve Liu, J. (2022) New insight into the impact of moisture content and pH on dissolved organic matter and microbial dynamics during cattle manure composting, Bioresource Technology, 344, 126236. doi:10.1016/j.biortech.2021.126236
  • 19. Gigliotti, G., Proietti, P., Said-Pullicino, D., Nasini, L., Pezzolla, D., Rosati, L. Ve Porceddu, P.R. (2012) Co-composting of olive husks with high moisture contents: organic matter dynamics and compost quality, International Biodeterioration & Biodegradation, 67, 8-14. doi:10.1016/j.ibiod.2011.11.009
  • 20. Haouas, A., Modafar, C.E., Douira, A., Ibnsouda-Koraichi, S., Filali-Maltouf, A., Moukhli, A. ve Amir, S. (2021) Evaluation of the nutrients cycle, humification process, and agronomic efficiency of organic wastes composting enriched with phosphate sludge, Journal of Cleaner Production, 302, 127051. doi:10.1016/j.jclepro.2021.127051
  • 21. Hebert, L., Cauchard, J., Doligez, P., Quitard, L., Laugier, C. ve Petry, S. (2010) Viability of Rhodococcus equi and Parascaris equorum eggs exposed to high temperatures, Current Microbiology, 60, 38-41. doi:10.1007/s00284-009-9497-5
  • 22. Iqbal, M.K., Shafiq, T. ve Ahmed, K. (2010) Characterization of bulking agents and its effects on physical properties of compost, Bioresource Technology, 101(6), 1913-1919. doi: 10.1016/j.biortech.2009.10.030
  • 23. Khalil, A.I, Hassouna, M.S., El-Ashqar, H.M.A. ve Fawzi, M. (2011) Changes in physical,chemical and microbial parameters during the composting of municipal sewage sludge, World Journal of Microbiology and Biotechnology, 27(10), 2359–2369. doi: 10.1007/s11274-011- 07048
  • 24. Khan, E., Khaodhir, S. ve Ruangrote, D. (2009) Effects of moisture content and initial pH in composting process on heavy metal removal characteristics of grass clipping compost used for stormwater filtration, Bioresource Technology, 100(19), 4454-4461. doi:10.1016/j.biortech.2008.12.062
  • 25. Komiyama, T. ve Ito, T. (2019) The characteristics of phosphorus in animal manure composts, Soil Science and Plant Nutrition, 65(3), 281-288. doi:10.1080/00380768.2019.1615384
  • 26. KT, 05.03.2015 tarihli ve 29286 sayılı Resmi Gazete, Kompost Tebliği.
  • 27. Lalremruati, M. ve Devi, A.S. (2021) Changes in physico-chemical properties during composting of three common household organic solid wastes amended with garden soil, Bioresource Technology Reports, 15, 100727. doi:10.1016/j.biteb.2021.100727
  • 28. Li, H., Wang, Y., Shi, L.Q., Mi, J., Song, D. ve Pan, X.J. (2012) Distribution and fractions of phosphorus and nitrogen in surface sediments from Dianchi Lake, China, International Journal of Environmental Research, 6(1), 195-208. doi:10.22059/IJER.2011.486
  • 29. Li, J., Akdeniz, N., Kim., H.H.M., Gates, R.S., Wang, X. ve Wang, K. (2021a) Quantification of sustainable animal manure utilization strategies in Hangzhou, China, Agricultural Systems, 191, 103150. doi:10.1016/j.agsy.2021.103150
  • 30. Li, M.X., He, X.S., Tang, J., Li, X., Zhao, R., Tao, Y.Q., Wang, C. ve Qiu, Z.P. (2021b) Influence of moisture content on chicken manure stabilization during microbial agent enhanced composting, Chemosphere, 364, 128549. doi: 10.1016/j.chemosphere.2020.128549
  • 31. Liao, H., Zhao, Q., Cui, P., Chen, Z., Yu, Z., Geisen, S., Friman, V.P. ve Zhou, S. (2019) Efficient reduction of antibiotic residues and associated resistance genes in tylosin antibiotic fermentation waste using hyperthermophilic composting, Environment International, 133(B), 105203. doi: 10.1016/j.envint.2019.105203
  • 32. Liu, B., Yu, K., Ahmed, I., Gin, K., Xi, B., Wei, Z., He, Y. ve Zhang, B. (2021) Key factors driving the fate of antibiotic resistance genes and controlling strategies during aerobic composting of animal manure: A review, Science of The Total Environment, 791, 148372. doi: 10.1016/j.scitotenv.2021.148372
  • 33. Manu, M.K., Kumar, R. ve Garg, A. (2017) Performance assessment of improved composting system for food waste with varying aeration and use of microbial inoculum, Bioresource Technology, 234, 167-17. doi:10.1016/j.biortech.2017.03.023
  • 34. Mclean, E.O. (1982) Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America.
  • 35. Nakasaki, K., Hirai, H., Mimoto, H., Quyen, T. N. M., Koyama, M., ve Takeda, K. (2019) Succession of microbial community during vigorous organic matter degradation in the primary fermentation stage of food waste composting, Science of The Total Environment, 671, 1237-1244. doi:10.1016/j.scitotenv.2019.03.341
  • 36. Okalebo, J.R., Gathua, K.W. ve Woomer, P.L. (1993) Laboratory Methods of Soil and Plant Analysis : A Working Manual, Tropical Soil Biology and Fertility Programme, Nairobi.
  • 37. Olsen, S.R., Cole, C.V. ve Watanabe, F.S. (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate, Colorado Agricultural Experiment Station Scientific Journal Series, 418, 18-19.
  • 38. Özlü, E., Sandhu, S.S., Kumar, S. ve Arriaga, F.J. (2019) Soil health indicators impacted by long-term cattle manure and inorganic fertilizer application in a corn-soybean rotation of South Dakota, Scientific Reports 9, 11776. doi:10.1038/s41598-019-48207-z
  • 39. Raj D. ve Antil, R. S. (2011) Evulation of maturity and stability parameters of composts prepared from agro-industrial wastes, Bioresource Technology, 102(3), 2868-2873. doi:10.106/j.biortech.2010.1.077
  • 40. Rhoades, J.D. (1982) Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America.
  • 41. Said-Pullicino, D., Erriquens, F.G. ve Gigliotti, G. (2007) Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity, Bioresource Technology, 98, 1822-1831. doi:10.1016/j.biortech.2006.06.018
  • 42. Sanchez-Monedero, M.A., Roig, A., Paredes, C. ve Bernal, M.P. (2001) Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures, Bioresource Technology, 78(3), 301-308. doi:10.1016/S0960-8524(01)00031-1
  • 43. Shan, G., Li, W., Gao, Y., Tan, W. ve Xi, B. (2021) Additives for reducing nitrogen loss during composting: A review, Journal of Cleaner Production, 307(10), 127308. doi: 10.1016/j.jclepro.2021.127308
  • 44. Song, B., Manu, M.K., Li, D., Wang, C., Varjani, S., Ladumor, N., Michael, L., Xu, Y. ve Wong, J.W.C. (2021) Food waste digestate composting: feedstock optimization with sawdust and mature compost, Bioresource Technology, 341, 125759. doi: 10.1016/j.biortech.2021.125759
  • 45. Sun, W., Huang, G.H., Zeng, G., Qin, X. ve Yu, H. (2011) Quantitative effects of composting state variables on C/N ratio through GA-aided multivariate analysis, Science of The Total Environment, 409(7), 1243-1254. doi:10.1016/j.scitotenv.2010.12.023
  • 46. Sundberg, C., Smars, S. ve Jönsson, H. (2004) Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting, Bioresource Technology, 95(2), 145-150. doi:10.1016/j.biortech.2004.01.016
  • 47. Şevik, F., Tosun, İ. Ve Ekinci, K. (2018) The effect of FAS and C/N ratios on co-composting of sewage sludge, dairy manure and tomato stalks, Waste Management, 80, 450-456. doi:10.1016/j.wasman.2018.07.051
  • 48. Thomas, C., Idler, C., Ammon, C. ve Amon T. (2020) Effects of the C/N ratio and moisture content on the survival of ESBL-producing Escherichia coli during chicken manure composting, Waste Management, 105, 110-118. doi: 10.1016/j.wasman.2020.01.031
  • 49. TÜİK (2020) Hayvansal Üretim İstatistikleri, Türkiye İstatistik Kurumu, https://data.tuik.gov.tr/Bulten/Index?p=Hayvansal-Uretim-Istatistikleri-Aralik-2020-37207
  • 50. Uçaroğlu, S. (2014) Use of sunflower stalks as a bulking agent in sewage sludge composting, Fresenius Environmental Bulletin, 23(6), 1302-1308. doi:10.3291/F-2013-546pj2014
  • 51. USEPA. (1993) Standards fort he use and Disposal of Sewage, 40 CFR Parts 257, 403, and 503 (FRO-4203-3), Final Rule, Fed. Register, 58, 9248, US Government Printing Office, Washington, DC.
  • 52. Wang, L., Li, Y., Prasher, S.O., Yan, B., Ou, Y., Cui, H. ve Cui, Y. (2019) Organic matter, a critical factor to immobilize phosphorus, copper, and zinc during composting under various initial C/N ratios, Bioresource Technology, 289, 121745. doi:10.1016/j.biortech.2019.121745
  • 53. Wang, G., Kong, Y., Liu, Y., Li, D., Zhang, X., Yuan, J. ve Li, G. (2020) Evolution of phytotoxicity during the active phase of co-composting of chicken manure, tobacco powder and mushroom substrate, Waste Management, 114, 25-32. doi:10.1016/j.wasman.2020.06.034
  • 54. Wang, L., Zheng, J. ve Huang, X. (2021) Co-composting materials can further affect the attenuation of antibiotic resistome in soil application, Waste Management, 135, 329-337. doi:10.1016/j.wasman.2021.09.016
  • 55. Waskom, R.M. (1999) Best management practices for manure utilization, 568A, Colorado State University Cooperative Extension, Fort Collins
  • 56. Wei, L., Shutao, W., Jin, Z. ve Tong, X. (2014) Biochar influences the microbial community structure during tomato stalk composting with chicken manure, Bioresource Technology, 154, 148-154. doi:10.1016/j.biortech.2013.12.022
  • 57. Wei, Y., Liang Z. ve Zhang Y. (2022) Evolution of physicochemical properties and bacterial community in aerobic composting of swine manure based on a patent compost tray, Bioresourca Technology, 343, 126136. doi:10.1016/j.bitech.2021.126136
  • 58. Wong, J.W.C., Karthikeyan, O.P. ve Selvam, A. (2017) Biological nutrient transformation during composting of pig manure and paper waste, Environmental Technology, 38(6), 745-761. doi: 10.1080/09593330.2016.1211747
  • 59. Wu, X., Wang, J., Shen, L., Wu, X., Amanze, C. ve Zeng, W. (2021) ) Effect of bamboo sphere amendment on the organic matter decomposition and humification of food waste composting, Waste Management, 133, 19-27. doi:10.1016/J.wasman.2021.07.030
  • 60. Yan, Z., Song, Z., Li, D., Yuan, Y., Liu, X. Ve Zheng, T. (2015) The effects of initial substrate concentration, C/N ratio, and temperature on solid-state anaerobic digestion from composting rice straw, Bioresource Technology, 177, 266-273. doi:10.1016/j.biortech.2014.11.089
  • 61. Yu, H., Xie, B., Khan, R. ve Shen, G. (2019) The changes in carbon, nitrogen components and humic substances during organic-inorganic aerobic co-composting, Bioresource Technology, 271, 228-235. doi:10.1016/j.biortech.2018.09.088
  • 62. Zhang, X., Fang, Q., Zhang, T., Ma, W., Velthof, G.L., Hou, Y., Oenema, O. ve Zhang, F. (2020) Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis, Global Change Biology, 26(2), 888-900. doi:10.1111/gcb.14826
  • 63. Zhen, X. F., Luo, M., Dong, H. Y., Li, S. B., Li, M. C., ve Kang, J. (2021) Variations of N-P-K contents in livestock and livestock manure composting. Applied Ecology And Envıronmental Research, 19(1), 249-261. doi:10.15666/aeer/1901_249261
  • 64. Zhu, P., Qin, H., Zhang, H., Luo, Y., Ru, Y., Li, J., San, K.W., Wang, L., Yu, X. ve Guo, W. (2021) Variations in antibiotic resistance genes and removal mechanisms induced by C/N ratio of substrate during composting, Science of The Total Environment, 798, 149288. doi:10.1016/j.scitotenv.2021.149288
  • 65. Zorpas, A.A., Arapoglou, D. ve Panagiotis, K. (2003) Waste paper and clinoptilolite as a bulking material with dewatered anaerobically stabilized primary sewage sludge (DASPSS) for compost production, Waste Management, 23(1), 27-35. doi:10.1016/S0956-053X(02)00042-9
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Büşra Özbek Bu kişi benim 0000-0002-8973-0151

Selnur Uçaroğlu 0000-0003-4888-7934

Yayımlanma Tarihi 30 Nisan 2022
Gönderilme Tarihi 13 Aralık 2021
Kabul Tarihi 16 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Özbek, B., & Uçaroğlu, S. (2022). FARKLI HAYVAN GÜBRELERİNİN KOMPOSTLANMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(1), 437-452. https://doi.org/10.17482/uumfd.1035975
AMA Özbek B, Uçaroğlu S. FARKLI HAYVAN GÜBRELERİNİN KOMPOSTLANMASI. UUJFE. Nisan 2022;27(1):437-452. doi:10.17482/uumfd.1035975
Chicago Özbek, Büşra, ve Selnur Uçaroğlu. “FARKLI HAYVAN GÜBRELERİNİN KOMPOSTLANMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, sy. 1 (Nisan 2022): 437-52. https://doi.org/10.17482/uumfd.1035975.
EndNote Özbek B, Uçaroğlu S (01 Nisan 2022) FARKLI HAYVAN GÜBRELERİNİN KOMPOSTLANMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 1 437–452.
IEEE B. Özbek ve S. Uçaroğlu, “FARKLI HAYVAN GÜBRELERİNİN KOMPOSTLANMASI”, UUJFE, c. 27, sy. 1, ss. 437–452, 2022, doi: 10.17482/uumfd.1035975.
ISNAD Özbek, Büşra - Uçaroğlu, Selnur. “FARKLI HAYVAN GÜBRELERİNİN KOMPOSTLANMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/1 (Nisan 2022), 437-452. https://doi.org/10.17482/uumfd.1035975.
JAMA Özbek B, Uçaroğlu S. FARKLI HAYVAN GÜBRELERİNİN KOMPOSTLANMASI. UUJFE. 2022;27:437–452.
MLA Özbek, Büşra ve Selnur Uçaroğlu. “FARKLI HAYVAN GÜBRELERİNİN KOMPOSTLANMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 27, sy. 1, 2022, ss. 437-52, doi:10.17482/uumfd.1035975.
Vancouver Özbek B, Uçaroğlu S. FARKLI HAYVAN GÜBRELERİNİN KOMPOSTLANMASI. UUJFE. 2022;27(1):437-52.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr