The COVID-19 virus, which caused the declaration of a worldwide pandemic in 2019, caused serious health problems and even death due to the rapid progression of the disease. Hence, early diagnosis of the disease has been of great importance to prevent the emergence of these adverse conditions. Medical imaging methods, such as X-Ray chest images, Computed Tomography (CT), etc. have played an important role in the detection. Deep learning methods have proven their superior image analysis ability. In this study, it is proposed to use the Vision Transformer (VIT), which has recently been popular in computer vision applications, for Covid-19 detection using X-ray chest images. The effectiveness of the VIT architecture is compared with a popular Convolutional Neural Network architecture, Resnet50 through various criteria, as well as VGG16 and InceptionV3 architectures, which were recorded to be successful in multi-class datasets of COVID-19. As a result of the experiments, it has been observed that the VIT architecture outperforms the Resnet50 and VGG16 architectures trained with the transfer learning method, and it has been observed that it achieves head-to-head results with InceptionV3, and it has been concluded that it can be used as an alternative decision support system for COVID-19 detection.
COVID-19 Vision Transformers Deep Learning CNN Transfer Learning
2019 yılında dünya çapında pandemi ilan edilmesine sebep olan COVİD-19 virüsü, bulaştığı bazı kişilerde hastalığın çok hızlı ilerlemesi sebebi ile çok ciddi sağlık problemlerine, hatta ölümlere neden olmuştur. Hastalığın hızlı teşhisi bu olumsuz durumların ortaya çıkmasını engellemek için büyük önem arz etmiştir. X-Ray göğüs görüntüleri, Bilgisayarlı Tomografi (BT) vb. gibi tıbbi görüntüleme yöntemleri covid-19 un tespit edilmesinde önemli rol oynamıştır. Derin öğrenme yöntemleri, insan faktörünü ve insandan kaynaklı hata payını minimuma indirerek üstün görüntü analizi yeteneğini kanıtlamıştır. Bu çalışmada, son dönemlerde bilgisayarlı görü uygulamalarında öne çıkan görüntü dönüştürücülerin (Vision Transformers, VIT) X-ray göğüs görüntüleri üzerinde Covid-19 tespiti için kullanılması önerilmiştir. Önerilen sistemin eğitim ve test performansı literatürde yaygın kullanılan bir Konvolüsyonel Sinir Ağı, Resnet50, ile ayrıntılı olarak karşılaştırılarak analiz edilmiştir. Ayrıca VİT mimarisinin etkinliği doğruluk, kesinlik, hassasiyet ve F1 skoru kriterleri aracılığı ile Resnet50’nin yanı sıra COVİD-19’un çok sınıflı veri kümelerinde başarı gösterdiği kaydedilen VGG16 ve InceptionV3 mimarileri ile de karşılaştırılmıştır. Deneyler sonucunda VİT mimarisinin öğrenme aktarımı yöntemi ile eğitilen Resnet50 ve VGG16 mimarilerinden daha iyi performans gösterdiği ve InceptionV3 ile başa baş sonuçlar elde ettiği gözlemlenmiş ve COVİD-19 tespitinde alternatif bir karar destek sistemi olarak kullanılabileceği tespit edilmiştir.
Covid-19 Görüntü Dönüştürücü Derin Öğrenme CNN Aktarım Öğrenme
Birincil Dil | Türkçe |
---|---|
Konular | Yapay Zeka |
Bölüm | Araştırma Makaleleri |
Yazarlar | |
Erken Görünüm Tarihi | 18 Ağustos 2023 |
Yayımlanma Tarihi | 31 Ağustos 2023 |
Gönderilme Tarihi | 23 Eylül 2022 |
Kabul Tarihi | 27 Mayıs 2023 |
Yayımlandığı Sayı | Yıl 2023 |
DUYURU:
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr