Research Article
BibTex RIS Cite

Discounted Traveling Purchaser Problem in Market Chains

Year 2025, Volume: 30 Issue: 2, 459 - 472, 20.08.2025
https://doi.org/10.17482/uumfd.1571735

Abstract

This study addresses the traveling purchaser problem (TPP), which is a well-known extension of the traveling salesman problem as presented in the literature. In TPP, a purchaser traveling from a central depot visits a number of markets at different locations to satisfy a given product demand and then returns to the depot. The aim of the problem is to find a procurement and route plan that minimizes the total procurement and transportation cost of the purchaser. In this study, TPP is extended by considering the promotional practices of chain markets. In this context, the purchaser may earn a discount from a market chain if he/she makes a certain number of market visits and purchases a certain amount of products. In this way, a reduction in the total cost of the purchaser can be achieved. In order to solve the problem, which is called the market chain discounted traveling purchaser problem (MCD-TPP), a tabu search (TS) algorithm is proposed. A problem set has been generated to test the effectiveness of the developed TS in solving the MCD-TPP. In the computational experiments, the TS is compared to the GUROBI solver. The results show that TA is able to produce more efficient results in shorter times.

References

  • Batista-Galván. M.. Riera-Ledesma. J. ve Salazar-González. J. J. (2013). The traveling purchaser problem. with multiple stacks and deliveries: A branch-and-cut approach. Computers & Operations Research. 40(8). 2103-2115. doi.org/10.1016/j.cor.2013.02.007
  • Bianchessi. N.. Mansini. R. ve Speranza. M. G. (2014). The distance constrained multiple vehicle traveling purchaser problem. European Journal of Operational Research. 235(1). 73-87. doi.org/10.1016/j.ejor.2013.10.018
  • Choi. M.J. ve Lee. S.H. (2011). The multiple traveling purchaser problem for maximizing system’s reliability with budget constraints. Expert Systems with Applications. 38(8). 9848-9853. doi.org/10.1016/j.eswa.2011.02.018
  • Gendreau. M.. Manerba. D. ve Mansini. R. (2016). The multi-vehicle traveling purchaser problem with pairwise incompatibility constraints and unitary demands: A branch-and-price approach. European Journal of Operational Research. 248(1). 59-71. doi.org/10.1016/j.ejor.2015.06.073
  • Glover. F. (1989) Tabu search – Part I. ORSA Journal on Computing. 1(3). 190-206.
  • Glover. F. (1990). Tabu search – Part II. ORSA Journal on Computing. 2(1). 4-32.
  • Gouveia. L.. Paias. A. ve Voß. S. (2011). Models for a traveling purchaser problem with additional side-constraints. Computers and Operations Research. 38(2). 550-558. doi.org/10.1016/j.cor.2010.07.016
  • Hasanpour Jesri. Z.S.. Eshghi. K.. Rafiee. M. ve Van Woensel. T. (2022). The multi-depot traveling purchaser problem with shared resources. Sustainability. 14(16). 10190. doi.org/10.3390/su141610190
  • Kang. S. ve Ouyang. Y. (2011). The traveling purchaser problem with stochastic prices: Exact and approximate algorithms. European Journal of Operational Research. 209(3). 265-272. doi.org/10.1016/j.ejor.2010.09.012
  • Kucukoglu. I. (2022). The traveling purchaser problem with fast service option. Computers and Operations Research. 141. 105700. doi.org/10.1016/j.cor.2022.105700
  • Kucukoglu. I.. Vansteenwegen. P. ve Cattrysse. D.. (2023). The traveling purchaser problem for perishable foods. Computers and Industrial Engineering. 195. 110424. doi.org/10.1016/j.cie.2024.110424
  • Laporte. G.. Riera-Ledesma. J. ve Salazar-González. J.J. (2003). A branch-and-cut algorithm for the undirected traveling purchaser problem. Operations Research. 51(6). 940-951. doi.org/10.1287/opre.51.6.940.24921
  • Maji. S.. Pradhan. K.. Maity. S.. Nielsen. I.E.. Giri. D.. ve Maiti. M. (2023). Multipath traveling purchaser problem with time-dependent market structure using quantum-inspired variable length genetic algorithm. Computers & Industrial Engineering. 186. 109710. doi.org/https://doi.org/10.1016/j.cie.2023.109710
  • Manerba. D. ve Mansini. R. (2015). A branch-and-cut algorithm for the multi-vehicle traveling purchaser problem with pairwise incompatibility constraints. Networks. 65(2). 139-154. doi.org/10.1002/net.21588
  • Manerba. D.. Mansini. R. ve Riera-Ledesma. J. (2017). The traveling purchaser problem and its variants. European Journal of Operational Research. 259(1). 1-18. doi.org/10.1016/j.ejor.2016.12.017
  • Mansini. R. ve Tocchella. B. (2009). The traveling purchaser problem with budget constraint. Computers & Operations Research. 36(7). 2263-2274. doi.org/10.1016/j.cor.2008.09.001
  • Miller. C.E.. Tucker. A.W. ve Zemlin. R.A. (1960). Integer programming formulation of traveling salesman problems. Journal of the Association for Computing Machinery. 7(4). 326–329.
  • Palomo-Martínez. P.J. ve Salazar-Aguilar. M.A. (2019). The bi-objective traveling purchaser problem with deliveries. European Journal of Operational Research. 273(2). 608-622. doi.org/10.1016/j.ejor.2018.08.039
  • Pearn. W. (1991). On the traveling purchaser problem. Teknik Rapor.
  • Riera-Ledesma. J. ve Salazar-González. J.J. (2013). A column generation approach for a school bus routing problem with resource constraints. Computers & Operations Research. 40(2). 566-583. doi.org/10.1016/j.cor.2012.08.011
  • Roy. A.. Maity. S.. ve Moon. I. (2023). Multi-vehicle clustered traveling purchaser problem using a variable-length genetic algorithm. Engineering Applications of Artificial Intelligence. 123. 106351. doi.org/10.1016/j.engappai.2023.106351
  • Voß. S. (1996). Dynamic tabu search strategies for the traveling purchaser problem. Annals of Operations Research. 63(2). 253-275.

ZİNCİR MARKET HARCAMALARINDA İNDİRİMLİ GEZGİN SATIN ALICI PROBLEMİ

Year 2025, Volume: 30 Issue: 2, 459 - 472, 20.08.2025
https://doi.org/10.17482/uumfd.1571735

Abstract

Bu çalışma literatürde iyi bilinen gezgin satıcı probleminin genişletilmiş bir versiyonu olan gezgin satın alıcı problemi (GSAP) dikkate almaktadır. GSAP’de merkezi bir depodan dolaşıma çıkan satın alıcı belirli ürün talebini karşılamak üzere farklı lokasyonlarda bulunan marketleri ziyaret ederek tekrar depoya geri dönmektedir. Problemde amaç satın alıcının toplam dolaşım ve satın alma maliyetini minimize edecek satın alma ve rota planının bulunmasıdır. Yapılan bu çalışmada GSAP, zincir marketlerin promosyon uygulamaları dikkate alınarak genişletilmiştir. Bu kapsamda, gezgin satın alıcı belirli zincir market grubundan belirli sayıda ve belirli miktarda satın alma işlemi yapması durumunda indirim kazanabilmektedir. Bu sayede satın alıcının toplam maliyetinde bir düşüş sağlanabilmektedir. Zincir market harcamalarında indirimli gezgin satın alıcı problemi (ZMHİ-GSAP) olarak adlandırılan problemin çözümü için bir tabu arama (TA) algoritması geliştirilmiştir. Geliştirilmiş olan TA’nın ZMHİ-GSAP’nin çözümünde etkinliğini test edebilmek için bir problem seti üretilmiştir. Yapılan sayısal çalışmalarda TA, GUROBI çözücüsü ile karşılaştırılmıştır. Elde edilen sonuçlar, TA’nın kısa sürelerde daha etkin sonuçlar üretebildiğini göstermiştir.

References

  • Batista-Galván. M.. Riera-Ledesma. J. ve Salazar-González. J. J. (2013). The traveling purchaser problem. with multiple stacks and deliveries: A branch-and-cut approach. Computers & Operations Research. 40(8). 2103-2115. doi.org/10.1016/j.cor.2013.02.007
  • Bianchessi. N.. Mansini. R. ve Speranza. M. G. (2014). The distance constrained multiple vehicle traveling purchaser problem. European Journal of Operational Research. 235(1). 73-87. doi.org/10.1016/j.ejor.2013.10.018
  • Choi. M.J. ve Lee. S.H. (2011). The multiple traveling purchaser problem for maximizing system’s reliability with budget constraints. Expert Systems with Applications. 38(8). 9848-9853. doi.org/10.1016/j.eswa.2011.02.018
  • Gendreau. M.. Manerba. D. ve Mansini. R. (2016). The multi-vehicle traveling purchaser problem with pairwise incompatibility constraints and unitary demands: A branch-and-price approach. European Journal of Operational Research. 248(1). 59-71. doi.org/10.1016/j.ejor.2015.06.073
  • Glover. F. (1989) Tabu search – Part I. ORSA Journal on Computing. 1(3). 190-206.
  • Glover. F. (1990). Tabu search – Part II. ORSA Journal on Computing. 2(1). 4-32.
  • Gouveia. L.. Paias. A. ve Voß. S. (2011). Models for a traveling purchaser problem with additional side-constraints. Computers and Operations Research. 38(2). 550-558. doi.org/10.1016/j.cor.2010.07.016
  • Hasanpour Jesri. Z.S.. Eshghi. K.. Rafiee. M. ve Van Woensel. T. (2022). The multi-depot traveling purchaser problem with shared resources. Sustainability. 14(16). 10190. doi.org/10.3390/su141610190
  • Kang. S. ve Ouyang. Y. (2011). The traveling purchaser problem with stochastic prices: Exact and approximate algorithms. European Journal of Operational Research. 209(3). 265-272. doi.org/10.1016/j.ejor.2010.09.012
  • Kucukoglu. I. (2022). The traveling purchaser problem with fast service option. Computers and Operations Research. 141. 105700. doi.org/10.1016/j.cor.2022.105700
  • Kucukoglu. I.. Vansteenwegen. P. ve Cattrysse. D.. (2023). The traveling purchaser problem for perishable foods. Computers and Industrial Engineering. 195. 110424. doi.org/10.1016/j.cie.2024.110424
  • Laporte. G.. Riera-Ledesma. J. ve Salazar-González. J.J. (2003). A branch-and-cut algorithm for the undirected traveling purchaser problem. Operations Research. 51(6). 940-951. doi.org/10.1287/opre.51.6.940.24921
  • Maji. S.. Pradhan. K.. Maity. S.. Nielsen. I.E.. Giri. D.. ve Maiti. M. (2023). Multipath traveling purchaser problem with time-dependent market structure using quantum-inspired variable length genetic algorithm. Computers & Industrial Engineering. 186. 109710. doi.org/https://doi.org/10.1016/j.cie.2023.109710
  • Manerba. D. ve Mansini. R. (2015). A branch-and-cut algorithm for the multi-vehicle traveling purchaser problem with pairwise incompatibility constraints. Networks. 65(2). 139-154. doi.org/10.1002/net.21588
  • Manerba. D.. Mansini. R. ve Riera-Ledesma. J. (2017). The traveling purchaser problem and its variants. European Journal of Operational Research. 259(1). 1-18. doi.org/10.1016/j.ejor.2016.12.017
  • Mansini. R. ve Tocchella. B. (2009). The traveling purchaser problem with budget constraint. Computers & Operations Research. 36(7). 2263-2274. doi.org/10.1016/j.cor.2008.09.001
  • Miller. C.E.. Tucker. A.W. ve Zemlin. R.A. (1960). Integer programming formulation of traveling salesman problems. Journal of the Association for Computing Machinery. 7(4). 326–329.
  • Palomo-Martínez. P.J. ve Salazar-Aguilar. M.A. (2019). The bi-objective traveling purchaser problem with deliveries. European Journal of Operational Research. 273(2). 608-622. doi.org/10.1016/j.ejor.2018.08.039
  • Pearn. W. (1991). On the traveling purchaser problem. Teknik Rapor.
  • Riera-Ledesma. J. ve Salazar-González. J.J. (2013). A column generation approach for a school bus routing problem with resource constraints. Computers & Operations Research. 40(2). 566-583. doi.org/10.1016/j.cor.2012.08.011
  • Roy. A.. Maity. S.. ve Moon. I. (2023). Multi-vehicle clustered traveling purchaser problem using a variable-length genetic algorithm. Engineering Applications of Artificial Intelligence. 123. 106351. doi.org/10.1016/j.engappai.2023.106351
  • Voß. S. (1996). Dynamic tabu search strategies for the traveling purchaser problem. Annals of Operations Research. 63(2). 253-275.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Industrial Engineering
Journal Section Research Article
Authors

Özlem Okumuş 0009-0000-0173-5074

İlker Küçükoğlu 0000-0002-5075-0876

Submission Date October 23, 2024
Acceptance Date April 16, 2025
Early Pub Date July 30, 2025
Publication Date August 20, 2025
Published in Issue Year 2025 Volume: 30 Issue: 2

Cite

APA Okumuş, Ö., & Küçükoğlu, İ. (2025). ZİNCİR MARKET HARCAMALARINDA İNDİRİMLİ GEZGİN SATIN ALICI PROBLEMİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 30(2), 459-472. https://doi.org/10.17482/uumfd.1571735
AMA Okumuş Ö, Küçükoğlu İ. ZİNCİR MARKET HARCAMALARINDA İNDİRİMLİ GEZGİN SATIN ALICI PROBLEMİ. UUJFE. August 2025;30(2):459-472. doi:10.17482/uumfd.1571735
Chicago Okumuş, Özlem, and İlker Küçükoğlu. “ZİNCİR MARKET HARCAMALARINDA İNDİRİMLİ GEZGİN SATIN ALICI PROBLEMİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30, no. 2 (August 2025): 459-72. https://doi.org/10.17482/uumfd.1571735.
EndNote Okumuş Ö, Küçükoğlu İ (August 1, 2025) ZİNCİR MARKET HARCAMALARINDA İNDİRİMLİ GEZGİN SATIN ALICI PROBLEMİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30 2 459–472.
IEEE Ö. Okumuş and İ. Küçükoğlu, “ZİNCİR MARKET HARCAMALARINDA İNDİRİMLİ GEZGİN SATIN ALICI PROBLEMİ”, UUJFE, vol. 30, no. 2, pp. 459–472, 2025, doi: 10.17482/uumfd.1571735.
ISNAD Okumuş, Özlem - Küçükoğlu, İlker. “ZİNCİR MARKET HARCAMALARINDA İNDİRİMLİ GEZGİN SATIN ALICI PROBLEMİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30/2 (August2025), 459-472. https://doi.org/10.17482/uumfd.1571735.
JAMA Okumuş Ö, Küçükoğlu İ. ZİNCİR MARKET HARCAMALARINDA İNDİRİMLİ GEZGİN SATIN ALICI PROBLEMİ. UUJFE. 2025;30:459–472.
MLA Okumuş, Özlem and İlker Küçükoğlu. “ZİNCİR MARKET HARCAMALARINDA İNDİRİMLİ GEZGİN SATIN ALICI PROBLEMİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 30, no. 2, 2025, pp. 459-72, doi:10.17482/uumfd.1571735.
Vancouver Okumuş Ö, Küçükoğlu İ. ZİNCİR MARKET HARCAMALARINDA İNDİRİMLİ GEZGİN SATIN ALICI PROBLEMİ. UUJFE. 2025;30(2):459-72.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.