Research Article
BibTex RIS Cite

EEG Tabanlı Tanıdık ve Tanıdık Olmayan Yüz Analizi: RMS Özellikleri ile Yapay Sinir Ağları ve Rastgele Orman Sınıflandırma

Year 2025, Volume: 30 Issue: 3, 765 - 778, 19.12.2025
https://doi.org/10.17482/uumfd.1573758

Abstract

Bu çalışmada, EEG tabanlı yüz tanıma işlemlerinde Kök Ortalama Kare (RMS) yöntemi kullanılarak elde edilen özellikler olasılıksal sinir ağları (PNN), çok katmanlı algılayıcılar (MLP) ve rastgele orman sınıflandırıcıları ile analiz edilmiştir. Sonuçlar, PNN modelinin %95.05 doğruluk oranıyla en yüksek performansı sergilediğini göstermiştir. Öte yandan, MLP ve Rastgele Orman modelleri sırasıyla %73.34 ve %78.01 doğruluk oranıyla daha düşük performans göstermiştir. Bu farklılıklar, bireyler arasındaki EEG topografik tepkilerinin değişkenliğinden ve bu modellerin verilerdeki farklılıkları yeterince iyi genelleştirememesinden kaynaklanıyor olabilir. Çalışma, EEG tabanlı sınıflandırma sistemlerinde bireysel sinirsel farklılıkların dikkate alınmasının önemini vurgulamaktadır. Gelecekte bu farklılıkları dengelemek için daha kişiselleştirilmiş modellerin geliştirilmesi gerektiğini önermektedir.

References

  • Bardak, F. K., Seyman, M. N., and Temurtaş, F. (2022). EEG based emotion prediction with neural network models. Tehnički Glasnik, 16(4), 497-502. doi:10.31803/tg-20220330064309
  • Bardak, F. K., Seyman, M. N., and Temurtaş, F. (2024). Adaptive neuro-fuzzy based hybrid classification model for emotion recognition from EEG signals. Neural Computing and Applications, 1-14. doi:10.1007/s00521-024-09573-6
  • Bardak, F. K., and Temurtaş, F. (2024). A Review of EEG-Based Face Recognition: Methodologies, Feature Extraction Techniques, and Classification Methods. AIntelia Science Notes, 3(1), 1-11. doi: 10.5281/zenodo.14557085
  • Chang, W., Wang, H., Yan, G., and Liu, C. (2020). An EEG based familiar and unfamiliar person identification and classification system using feature extraction and directed functional brain network. Expert Systems with Applications, 158, 113448. doi: 10.1016/j.eswa.2020.113448
  • Farizal, A., Wibawa, A. D., Pamungkas, Y., Pratiwi, M., and Mas, A. (2022). Classifying known/unknown information in the brain using electroencephalography (EEG) signal analysis. In 2022 11th Electrical Power, Electronics, Communications, Controls. doi: 10.1109/EECCIS54468.2022.9902928
  • Görür, K., Bozkurt, M. R., Başçıl, M. S., and Temurtaş, F. (2016). Literature Research: Bruxism. Electronic Letters on Science and Engineering, 12(3), 11-17.
  • Jackson, M. C., and Raymond, J. E. (2006). The role of attention and familiarity in face identification. Perception and Psychophysics, 68, 543-557. doi:10.3758/BF03208757
  • Karacan, S. Ş., and Saraoğlu, H. M. (2024). A simplified method for relapsing-remitting multiple sclerosis detection: Insights from resting EEG signals. Computers in Biology and Medicine, 108728. doi: 10.1016/j.compbiomed.2024.108728
  • Kramer, R. S., Young, A. W., and Burton, A. M. (2018). Understanding face familiarity. Cognition, 172, 46-58. doi: 10.1016/j.cognition.2017.12.005
  • Liu, G., Wen, Y., Hsiao, J. H., Zhang, D., Tian, L., and Zhou, W. (2023). EEG-Based Familiar and Unfamiliar Face Classification Using Filter-Bank Differential Entropy Features. IEEE Transactions on Human-Machine Systems, 54(1), 44-55. doi: 10.1109/THMS.2023.3332209
  • Liu, G., Zhang, D., Tian, L., and Zhou, W. (2021). EEG-based familiar and unfamiliar face classification using differential entropy feature. In 2021 IEEE 2nd International Conference on Human-Machine Systems (ICHMS), 1-3. doi: 10.1109/ICHMS53169.2021.9582641
  • Natu, V., and O’Toole, A. J. (2011). The neural processing of familiar and unfamiliar faces: A review and synopsis. British Journal of Psychology, 102(4), 726-747. doi: 10.1111/j.2044-8295.2011.02053.x
  • Özbeyaz, A., and Arica, S. (2017). Classification of EEG signals of familiar and unfamiliar face stimuli exploiting most discriminative channels. Turkish Journal of Electrical Engineering and Computer Sciences, 25(4), 3342-3354. doi: 10.3906/elk-1608-13
  • Podvigina, D. N., and Prokopenya, V. K. (2019). Role of familiarity in recognizing faces and words: an EEG study. Sovremennye Tehnologii v Medicine, 11(1), 76-82. doi: 10.17691/stm2019.11.1.09
  • Tan, Z. H. E., Smitha, K. G., and Vinod, A. P. (2015). Detection of familiar and unfamiliar images using EEG-based brain-computer interface. In 2015 IEEE International Conference on Systems, Man, and Cybernetics, 3152-3157. doi: 10.1109/SMC.2015.547
  • Temurtaş, H., and Temurtaş, F. (2016). A Study on Continuous Resilient Average for Sensor Transient Response. Electronic Letters on Science and Engineering, 12(1), 1-7.
  • Vanzara, N., Shah, C. P., and Vithalani, A. (2024). Detection of Familiar and Unfamiliar faces from EEG. Journal of Integrated Science and Technology, 12(1), 715-715.
  • Yan, X., Volfart, A., and Rossion, B. (2023). A neural marker of the human face identity familiarity effect. Scientific Reports, 13(1), 16294. doi:10.1038/s41598-023-40852-9

EEG-BASED FAMILIAR AND UNFAMILIAR FACE ANALYSIS: CLASSIFICATION USING RMS FEATURES WITH ARTIFICIAL NEURAL NETWORKS AND RANDOM FORESTS

Year 2025, Volume: 30 Issue: 3, 765 - 778, 19.12.2025
https://doi.org/10.17482/uumfd.1573758

Abstract

In this study, the features obtained using the Root Mean Square (RMS) method in EEG-based face recognition processes were analyzed with probabilistic neural networks (PNN), multilayer perceptrons (MLP), and random forest classifiers. The results showed that the PNN model exhibited the highest performance with an accuracy rate of 95.05%. On the other hand, the MLP and Random Forest models showed lower performance with an accuracy rate of 73.34% and 78.01%, respectively. These differences may be due to the variability in EEG topographic responses among individuals and the inability of these models to generalize the differences in the data well enough. The study emphasizes the importance of considering individual neural differences in EEG-based classification systems. It suggests that more personalized models should be developed to balance these differences in the future.

References

  • Bardak, F. K., Seyman, M. N., and Temurtaş, F. (2022). EEG based emotion prediction with neural network models. Tehnički Glasnik, 16(4), 497-502. doi:10.31803/tg-20220330064309
  • Bardak, F. K., Seyman, M. N., and Temurtaş, F. (2024). Adaptive neuro-fuzzy based hybrid classification model for emotion recognition from EEG signals. Neural Computing and Applications, 1-14. doi:10.1007/s00521-024-09573-6
  • Bardak, F. K., and Temurtaş, F. (2024). A Review of EEG-Based Face Recognition: Methodologies, Feature Extraction Techniques, and Classification Methods. AIntelia Science Notes, 3(1), 1-11. doi: 10.5281/zenodo.14557085
  • Chang, W., Wang, H., Yan, G., and Liu, C. (2020). An EEG based familiar and unfamiliar person identification and classification system using feature extraction and directed functional brain network. Expert Systems with Applications, 158, 113448. doi: 10.1016/j.eswa.2020.113448
  • Farizal, A., Wibawa, A. D., Pamungkas, Y., Pratiwi, M., and Mas, A. (2022). Classifying known/unknown information in the brain using electroencephalography (EEG) signal analysis. In 2022 11th Electrical Power, Electronics, Communications, Controls. doi: 10.1109/EECCIS54468.2022.9902928
  • Görür, K., Bozkurt, M. R., Başçıl, M. S., and Temurtaş, F. (2016). Literature Research: Bruxism. Electronic Letters on Science and Engineering, 12(3), 11-17.
  • Jackson, M. C., and Raymond, J. E. (2006). The role of attention and familiarity in face identification. Perception and Psychophysics, 68, 543-557. doi:10.3758/BF03208757
  • Karacan, S. Ş., and Saraoğlu, H. M. (2024). A simplified method for relapsing-remitting multiple sclerosis detection: Insights from resting EEG signals. Computers in Biology and Medicine, 108728. doi: 10.1016/j.compbiomed.2024.108728
  • Kramer, R. S., Young, A. W., and Burton, A. M. (2018). Understanding face familiarity. Cognition, 172, 46-58. doi: 10.1016/j.cognition.2017.12.005
  • Liu, G., Wen, Y., Hsiao, J. H., Zhang, D., Tian, L., and Zhou, W. (2023). EEG-Based Familiar and Unfamiliar Face Classification Using Filter-Bank Differential Entropy Features. IEEE Transactions on Human-Machine Systems, 54(1), 44-55. doi: 10.1109/THMS.2023.3332209
  • Liu, G., Zhang, D., Tian, L., and Zhou, W. (2021). EEG-based familiar and unfamiliar face classification using differential entropy feature. In 2021 IEEE 2nd International Conference on Human-Machine Systems (ICHMS), 1-3. doi: 10.1109/ICHMS53169.2021.9582641
  • Natu, V., and O’Toole, A. J. (2011). The neural processing of familiar and unfamiliar faces: A review and synopsis. British Journal of Psychology, 102(4), 726-747. doi: 10.1111/j.2044-8295.2011.02053.x
  • Özbeyaz, A., and Arica, S. (2017). Classification of EEG signals of familiar and unfamiliar face stimuli exploiting most discriminative channels. Turkish Journal of Electrical Engineering and Computer Sciences, 25(4), 3342-3354. doi: 10.3906/elk-1608-13
  • Podvigina, D. N., and Prokopenya, V. K. (2019). Role of familiarity in recognizing faces and words: an EEG study. Sovremennye Tehnologii v Medicine, 11(1), 76-82. doi: 10.17691/stm2019.11.1.09
  • Tan, Z. H. E., Smitha, K. G., and Vinod, A. P. (2015). Detection of familiar and unfamiliar images using EEG-based brain-computer interface. In 2015 IEEE International Conference on Systems, Man, and Cybernetics, 3152-3157. doi: 10.1109/SMC.2015.547
  • Temurtaş, H., and Temurtaş, F. (2016). A Study on Continuous Resilient Average for Sensor Transient Response. Electronic Letters on Science and Engineering, 12(1), 1-7.
  • Vanzara, N., Shah, C. P., and Vithalani, A. (2024). Detection of Familiar and Unfamiliar faces from EEG. Journal of Integrated Science and Technology, 12(1), 715-715.
  • Yan, X., Volfart, A., and Rossion, B. (2023). A neural marker of the human face identity familiarity effect. Scientific Reports, 13(1), 16294. doi:10.1038/s41598-023-40852-9
There are 18 citations in total.

Details

Primary Language English
Subjects Electronics, Sensors and Digital Hardware (Other)
Journal Section Research Article
Authors

Fatma Kebire Bardak Özkul 0000-0002-9380-2330

Feyzullah Temurtaş 0000-0002-3158-4032

Submission Date October 25, 2024
Acceptance Date September 2, 2025
Early Pub Date December 11, 2025
Publication Date December 19, 2025
Published in Issue Year 2025 Volume: 30 Issue: 3

Cite

APA Bardak Özkul, F. K., & Temurtaş, F. (2025). EEG-BASED FAMILIAR AND UNFAMILIAR FACE ANALYSIS: CLASSIFICATION USING RMS FEATURES WITH ARTIFICIAL NEURAL NETWORKS AND RANDOM FORESTS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 30(3), 765-778. https://doi.org/10.17482/uumfd.1573758
AMA Bardak Özkul FK, Temurtaş F. EEG-BASED FAMILIAR AND UNFAMILIAR FACE ANALYSIS: CLASSIFICATION USING RMS FEATURES WITH ARTIFICIAL NEURAL NETWORKS AND RANDOM FORESTS. UUJFE. December 2025;30(3):765-778. doi:10.17482/uumfd.1573758
Chicago Bardak Özkul, Fatma Kebire, and Feyzullah Temurtaş. “EEG-BASED FAMILIAR AND UNFAMILIAR FACE ANALYSIS: CLASSIFICATION USING RMS FEATURES WITH ARTIFICIAL NEURAL NETWORKS AND RANDOM FORESTS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30, no. 3 (December 2025): 765-78. https://doi.org/10.17482/uumfd.1573758.
EndNote Bardak Özkul FK, Temurtaş F (December 1, 2025) EEG-BASED FAMILIAR AND UNFAMILIAR FACE ANALYSIS: CLASSIFICATION USING RMS FEATURES WITH ARTIFICIAL NEURAL NETWORKS AND RANDOM FORESTS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30 3 765–778.
IEEE F. K. Bardak Özkul and F. Temurtaş, “EEG-BASED FAMILIAR AND UNFAMILIAR FACE ANALYSIS: CLASSIFICATION USING RMS FEATURES WITH ARTIFICIAL NEURAL NETWORKS AND RANDOM FORESTS”, UUJFE, vol. 30, no. 3, pp. 765–778, 2025, doi: 10.17482/uumfd.1573758.
ISNAD Bardak Özkul, Fatma Kebire - Temurtaş, Feyzullah. “EEG-BASED FAMILIAR AND UNFAMILIAR FACE ANALYSIS: CLASSIFICATION USING RMS FEATURES WITH ARTIFICIAL NEURAL NETWORKS AND RANDOM FORESTS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30/3 (December2025), 765-778. https://doi.org/10.17482/uumfd.1573758.
JAMA Bardak Özkul FK, Temurtaş F. EEG-BASED FAMILIAR AND UNFAMILIAR FACE ANALYSIS: CLASSIFICATION USING RMS FEATURES WITH ARTIFICIAL NEURAL NETWORKS AND RANDOM FORESTS. UUJFE. 2025;30:765–778.
MLA Bardak Özkul, Fatma Kebire and Feyzullah Temurtaş. “EEG-BASED FAMILIAR AND UNFAMILIAR FACE ANALYSIS: CLASSIFICATION USING RMS FEATURES WITH ARTIFICIAL NEURAL NETWORKS AND RANDOM FORESTS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 30, no. 3, 2025, pp. 765-78, doi:10.17482/uumfd.1573758.
Vancouver Bardak Özkul FK, Temurtaş F. EEG-BASED FAMILIAR AND UNFAMILIAR FACE ANALYSIS: CLASSIFICATION USING RMS FEATURES WITH ARTIFICIAL NEURAL NETWORKS AND RANDOM FORESTS. UUJFE. 2025;30(3):765-78.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.