Bu çalışmada, EEG tabanlı yüz tanıma işlemlerinde Kök Ortalama Kare (RMS) yöntemi kullanılarak elde edilen özellikler olasılıksal sinir ağları (PNN), çok katmanlı algılayıcılar (MLP) ve rastgele orman sınıflandırıcıları ile analiz edilmiştir. Sonuçlar, PNN modelinin %95.05 doğruluk oranıyla en yüksek performansı sergilediğini göstermiştir. Öte yandan, MLP ve Rastgele Orman modelleri sırasıyla %73.34 ve %78.01 doğruluk oranıyla daha düşük performans göstermiştir. Bu farklılıklar, bireyler arasındaki EEG topografik tepkilerinin değişkenliğinden ve bu modellerin verilerdeki farklılıkları yeterince iyi genelleştirememesinden kaynaklanıyor olabilir. Çalışma, EEG tabanlı sınıflandırma sistemlerinde bireysel sinirsel farklılıkların dikkate alınmasının önemini vurgulamaktadır. Gelecekte bu farklılıkları dengelemek için daha kişiselleştirilmiş modellerin geliştirilmesi gerektiğini önermektedir.
In this study, the features obtained using the Root Mean Square (RMS) method in EEG-based face recognition processes were analyzed with probabilistic neural networks (PNN), multilayer perceptrons (MLP), and random forest classifiers. The results showed that the PNN model exhibited the highest performance with an accuracy rate of 95.05%. On the other hand, the MLP and Random Forest models showed lower performance with an accuracy rate of 73.34% and 78.01%, respectively. These differences may be due to the variability in EEG topographic responses among individuals and the inability of these models to generalize the differences in the data well enough. The study emphasizes the importance of considering individual neural differences in EEG-based classification systems. It suggests that more personalized models should be developed to balance these differences in the future.
| Primary Language | English |
|---|---|
| Subjects | Electronics, Sensors and Digital Hardware (Other) |
| Journal Section | Research Article |
| Authors | |
| Submission Date | October 25, 2024 |
| Acceptance Date | September 2, 2025 |
| Early Pub Date | December 11, 2025 |
| Publication Date | December 19, 2025 |
| Published in Issue | Year 2025 Volume: 30 Issue: 3 |
Announcements:
30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.