Araştırma Makalesi
BibTex RIS Kaynak Göster

EEG Tabanlı Tanıdık ve Tanıdık Olmayan Yüz Analizi: RMS Özellikleri ile Yapay Sinir Ağları ve Rastgele Orman Sınıflandırma

Yıl 2025, Cilt: 30 Sayı: 3, 765 - 778, 19.12.2025
https://doi.org/10.17482/uumfd.1573758

Öz

Bu çalışmada, EEG tabanlı yüz tanıma işlemlerinde Kök Ortalama Kare (RMS) yöntemi kullanılarak elde edilen özellikler olasılıksal sinir ağları (PNN), çok katmanlı algılayıcılar (MLP) ve rastgele orman sınıflandırıcıları ile analiz edilmiştir. Sonuçlar, PNN modelinin %95.05 doğruluk oranıyla en yüksek performansı sergilediğini göstermiştir. Öte yandan, MLP ve Rastgele Orman modelleri sırasıyla %73.34 ve %78.01 doğruluk oranıyla daha düşük performans göstermiştir. Bu farklılıklar, bireyler arasındaki EEG topografik tepkilerinin değişkenliğinden ve bu modellerin verilerdeki farklılıkları yeterince iyi genelleştirememesinden kaynaklanıyor olabilir. Çalışma, EEG tabanlı sınıflandırma sistemlerinde bireysel sinirsel farklılıkların dikkate alınmasının önemini vurgulamaktadır. Gelecekte bu farklılıkları dengelemek için daha kişiselleştirilmiş modellerin geliştirilmesi gerektiğini önermektedir.

Kaynakça

  • Bardak, F. K., Seyman, M. N., and Temurtaş, F. (2022). EEG based emotion prediction with neural network models. Tehnički Glasnik, 16(4), 497-502. doi:10.31803/tg-20220330064309
  • Bardak, F. K., Seyman, M. N., and Temurtaş, F. (2024). Adaptive neuro-fuzzy based hybrid classification model for emotion recognition from EEG signals. Neural Computing and Applications, 1-14. doi:10.1007/s00521-024-09573-6
  • Bardak, F. K., and Temurtaş, F. (2024). A Review of EEG-Based Face Recognition: Methodologies, Feature Extraction Techniques, and Classification Methods. AIntelia Science Notes, 3(1), 1-11. doi: 10.5281/zenodo.14557085
  • Chang, W., Wang, H., Yan, G., and Liu, C. (2020). An EEG based familiar and unfamiliar person identification and classification system using feature extraction and directed functional brain network. Expert Systems with Applications, 158, 113448. doi: 10.1016/j.eswa.2020.113448
  • Farizal, A., Wibawa, A. D., Pamungkas, Y., Pratiwi, M., and Mas, A. (2022). Classifying known/unknown information in the brain using electroencephalography (EEG) signal analysis. In 2022 11th Electrical Power, Electronics, Communications, Controls. doi: 10.1109/EECCIS54468.2022.9902928
  • Görür, K., Bozkurt, M. R., Başçıl, M. S., and Temurtaş, F. (2016). Literature Research: Bruxism. Electronic Letters on Science and Engineering, 12(3), 11-17.
  • Jackson, M. C., and Raymond, J. E. (2006). The role of attention and familiarity in face identification. Perception and Psychophysics, 68, 543-557. doi:10.3758/BF03208757
  • Karacan, S. Ş., and Saraoğlu, H. M. (2024). A simplified method for relapsing-remitting multiple sclerosis detection: Insights from resting EEG signals. Computers in Biology and Medicine, 108728. doi: 10.1016/j.compbiomed.2024.108728
  • Kramer, R. S., Young, A. W., and Burton, A. M. (2018). Understanding face familiarity. Cognition, 172, 46-58. doi: 10.1016/j.cognition.2017.12.005
  • Liu, G., Wen, Y., Hsiao, J. H., Zhang, D., Tian, L., and Zhou, W. (2023). EEG-Based Familiar and Unfamiliar Face Classification Using Filter-Bank Differential Entropy Features. IEEE Transactions on Human-Machine Systems, 54(1), 44-55. doi: 10.1109/THMS.2023.3332209
  • Liu, G., Zhang, D., Tian, L., and Zhou, W. (2021). EEG-based familiar and unfamiliar face classification using differential entropy feature. In 2021 IEEE 2nd International Conference on Human-Machine Systems (ICHMS), 1-3. doi: 10.1109/ICHMS53169.2021.9582641
  • Natu, V., and O’Toole, A. J. (2011). The neural processing of familiar and unfamiliar faces: A review and synopsis. British Journal of Psychology, 102(4), 726-747. doi: 10.1111/j.2044-8295.2011.02053.x
  • Özbeyaz, A., and Arica, S. (2017). Classification of EEG signals of familiar and unfamiliar face stimuli exploiting most discriminative channels. Turkish Journal of Electrical Engineering and Computer Sciences, 25(4), 3342-3354. doi: 10.3906/elk-1608-13
  • Podvigina, D. N., and Prokopenya, V. K. (2019). Role of familiarity in recognizing faces and words: an EEG study. Sovremennye Tehnologii v Medicine, 11(1), 76-82. doi: 10.17691/stm2019.11.1.09
  • Tan, Z. H. E., Smitha, K. G., and Vinod, A. P. (2015). Detection of familiar and unfamiliar images using EEG-based brain-computer interface. In 2015 IEEE International Conference on Systems, Man, and Cybernetics, 3152-3157. doi: 10.1109/SMC.2015.547
  • Temurtaş, H., and Temurtaş, F. (2016). A Study on Continuous Resilient Average for Sensor Transient Response. Electronic Letters on Science and Engineering, 12(1), 1-7.
  • Vanzara, N., Shah, C. P., and Vithalani, A. (2024). Detection of Familiar and Unfamiliar faces from EEG. Journal of Integrated Science and Technology, 12(1), 715-715.
  • Yan, X., Volfart, A., and Rossion, B. (2023). A neural marker of the human face identity familiarity effect. Scientific Reports, 13(1), 16294. doi:10.1038/s41598-023-40852-9

EEG-BASED FAMILIAR AND UNFAMILIAR FACE ANALYSIS: CLASSIFICATION USING RMS FEATURES WITH ARTIFICIAL NEURAL NETWORKS AND RANDOM FORESTS

Yıl 2025, Cilt: 30 Sayı: 3, 765 - 778, 19.12.2025
https://doi.org/10.17482/uumfd.1573758

Öz

In this study, the features obtained using the Root Mean Square (RMS) method in EEG-based face recognition processes were analyzed with probabilistic neural networks (PNN), multilayer perceptrons (MLP), and random forest classifiers. The results showed that the PNN model exhibited the highest performance with an accuracy rate of 95.05%. On the other hand, the MLP and Random Forest models showed lower performance with an accuracy rate of 73.34% and 78.01%, respectively. These differences may be due to the variability in EEG topographic responses among individuals and the inability of these models to generalize the differences in the data well enough. The study emphasizes the importance of considering individual neural differences in EEG-based classification systems. It suggests that more personalized models should be developed to balance these differences in the future.

Kaynakça

  • Bardak, F. K., Seyman, M. N., and Temurtaş, F. (2022). EEG based emotion prediction with neural network models. Tehnički Glasnik, 16(4), 497-502. doi:10.31803/tg-20220330064309
  • Bardak, F. K., Seyman, M. N., and Temurtaş, F. (2024). Adaptive neuro-fuzzy based hybrid classification model for emotion recognition from EEG signals. Neural Computing and Applications, 1-14. doi:10.1007/s00521-024-09573-6
  • Bardak, F. K., and Temurtaş, F. (2024). A Review of EEG-Based Face Recognition: Methodologies, Feature Extraction Techniques, and Classification Methods. AIntelia Science Notes, 3(1), 1-11. doi: 10.5281/zenodo.14557085
  • Chang, W., Wang, H., Yan, G., and Liu, C. (2020). An EEG based familiar and unfamiliar person identification and classification system using feature extraction and directed functional brain network. Expert Systems with Applications, 158, 113448. doi: 10.1016/j.eswa.2020.113448
  • Farizal, A., Wibawa, A. D., Pamungkas, Y., Pratiwi, M., and Mas, A. (2022). Classifying known/unknown information in the brain using electroencephalography (EEG) signal analysis. In 2022 11th Electrical Power, Electronics, Communications, Controls. doi: 10.1109/EECCIS54468.2022.9902928
  • Görür, K., Bozkurt, M. R., Başçıl, M. S., and Temurtaş, F. (2016). Literature Research: Bruxism. Electronic Letters on Science and Engineering, 12(3), 11-17.
  • Jackson, M. C., and Raymond, J. E. (2006). The role of attention and familiarity in face identification. Perception and Psychophysics, 68, 543-557. doi:10.3758/BF03208757
  • Karacan, S. Ş., and Saraoğlu, H. M. (2024). A simplified method for relapsing-remitting multiple sclerosis detection: Insights from resting EEG signals. Computers in Biology and Medicine, 108728. doi: 10.1016/j.compbiomed.2024.108728
  • Kramer, R. S., Young, A. W., and Burton, A. M. (2018). Understanding face familiarity. Cognition, 172, 46-58. doi: 10.1016/j.cognition.2017.12.005
  • Liu, G., Wen, Y., Hsiao, J. H., Zhang, D., Tian, L., and Zhou, W. (2023). EEG-Based Familiar and Unfamiliar Face Classification Using Filter-Bank Differential Entropy Features. IEEE Transactions on Human-Machine Systems, 54(1), 44-55. doi: 10.1109/THMS.2023.3332209
  • Liu, G., Zhang, D., Tian, L., and Zhou, W. (2021). EEG-based familiar and unfamiliar face classification using differential entropy feature. In 2021 IEEE 2nd International Conference on Human-Machine Systems (ICHMS), 1-3. doi: 10.1109/ICHMS53169.2021.9582641
  • Natu, V., and O’Toole, A. J. (2011). The neural processing of familiar and unfamiliar faces: A review and synopsis. British Journal of Psychology, 102(4), 726-747. doi: 10.1111/j.2044-8295.2011.02053.x
  • Özbeyaz, A., and Arica, S. (2017). Classification of EEG signals of familiar and unfamiliar face stimuli exploiting most discriminative channels. Turkish Journal of Electrical Engineering and Computer Sciences, 25(4), 3342-3354. doi: 10.3906/elk-1608-13
  • Podvigina, D. N., and Prokopenya, V. K. (2019). Role of familiarity in recognizing faces and words: an EEG study. Sovremennye Tehnologii v Medicine, 11(1), 76-82. doi: 10.17691/stm2019.11.1.09
  • Tan, Z. H. E., Smitha, K. G., and Vinod, A. P. (2015). Detection of familiar and unfamiliar images using EEG-based brain-computer interface. In 2015 IEEE International Conference on Systems, Man, and Cybernetics, 3152-3157. doi: 10.1109/SMC.2015.547
  • Temurtaş, H., and Temurtaş, F. (2016). A Study on Continuous Resilient Average for Sensor Transient Response. Electronic Letters on Science and Engineering, 12(1), 1-7.
  • Vanzara, N., Shah, C. P., and Vithalani, A. (2024). Detection of Familiar and Unfamiliar faces from EEG. Journal of Integrated Science and Technology, 12(1), 715-715.
  • Yan, X., Volfart, A., and Rossion, B. (2023). A neural marker of the human face identity familiarity effect. Scientific Reports, 13(1), 16294. doi:10.1038/s41598-023-40852-9
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektronik, Sensörler ve Dijital Donanım (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Fatma Kebire Bardak Özkul 0000-0002-9380-2330

Feyzullah Temurtaş 0000-0002-3158-4032

Gönderilme Tarihi 25 Ekim 2024
Kabul Tarihi 2 Eylül 2025
Erken Görünüm Tarihi 11 Aralık 2025
Yayımlanma Tarihi 19 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 3

Kaynak Göster

APA Bardak Özkul, F. K., & Temurtaş, F. (2025). EEG-BASED FAMILIAR AND UNFAMILIAR FACE ANALYSIS: CLASSIFICATION USING RMS FEATURES WITH ARTIFICIAL NEURAL NETWORKS AND RANDOM FORESTS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 30(3), 765-778. https://doi.org/10.17482/uumfd.1573758
AMA Bardak Özkul FK, Temurtaş F. EEG-BASED FAMILIAR AND UNFAMILIAR FACE ANALYSIS: CLASSIFICATION USING RMS FEATURES WITH ARTIFICIAL NEURAL NETWORKS AND RANDOM FORESTS. UUJFE. Aralık 2025;30(3):765-778. doi:10.17482/uumfd.1573758
Chicago Bardak Özkul, Fatma Kebire, ve Feyzullah Temurtaş. “EEG-BASED FAMILIAR AND UNFAMILIAR FACE ANALYSIS: CLASSIFICATION USING RMS FEATURES WITH ARTIFICIAL NEURAL NETWORKS AND RANDOM FORESTS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30, sy. 3 (Aralık 2025): 765-78. https://doi.org/10.17482/uumfd.1573758.
EndNote Bardak Özkul FK, Temurtaş F (01 Aralık 2025) EEG-BASED FAMILIAR AND UNFAMILIAR FACE ANALYSIS: CLASSIFICATION USING RMS FEATURES WITH ARTIFICIAL NEURAL NETWORKS AND RANDOM FORESTS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30 3 765–778.
IEEE F. K. Bardak Özkul ve F. Temurtaş, “EEG-BASED FAMILIAR AND UNFAMILIAR FACE ANALYSIS: CLASSIFICATION USING RMS FEATURES WITH ARTIFICIAL NEURAL NETWORKS AND RANDOM FORESTS”, UUJFE, c. 30, sy. 3, ss. 765–778, 2025, doi: 10.17482/uumfd.1573758.
ISNAD Bardak Özkul, Fatma Kebire - Temurtaş, Feyzullah. “EEG-BASED FAMILIAR AND UNFAMILIAR FACE ANALYSIS: CLASSIFICATION USING RMS FEATURES WITH ARTIFICIAL NEURAL NETWORKS AND RANDOM FORESTS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30/3 (Aralık2025), 765-778. https://doi.org/10.17482/uumfd.1573758.
JAMA Bardak Özkul FK, Temurtaş F. EEG-BASED FAMILIAR AND UNFAMILIAR FACE ANALYSIS: CLASSIFICATION USING RMS FEATURES WITH ARTIFICIAL NEURAL NETWORKS AND RANDOM FORESTS. UUJFE. 2025;30:765–778.
MLA Bardak Özkul, Fatma Kebire ve Feyzullah Temurtaş. “EEG-BASED FAMILIAR AND UNFAMILIAR FACE ANALYSIS: CLASSIFICATION USING RMS FEATURES WITH ARTIFICIAL NEURAL NETWORKS AND RANDOM FORESTS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 30, sy. 3, 2025, ss. 765-78, doi:10.17482/uumfd.1573758.
Vancouver Bardak Özkul FK, Temurtaş F. EEG-BASED FAMILIAR AND UNFAMILIAR FACE ANALYSIS: CLASSIFICATION USING RMS FEATURES WITH ARTIFICIAL NEURAL NETWORKS AND RANDOM FORESTS. UUJFE. 2025;30(3):765-78.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr