Research Article
BibTex RIS Cite

ÇELİK YAPILARDA KULLANILAN DİYAGONAL ÇELİK ÇAPRAZLARIN YAPAY ARI KOLONİ ALGORİTMASI İLE OPTİMİZASYONU

Year 2018, Volume: 23 Issue: 1, 51 - 64, 11.04.2018
https://doi.org/10.17482/uumfd.414427

Abstract

Diyagonal çelik çapraz (DÇÇ) sistemler, mevcut
yapının deprem performansının iyileştirilmesinde veya yeni yapının depreme
dayanıklı olarak tasarlanmasında yaygın olarak kullanılan yöntemlerden
birisidir. Bu sistemler yapının yatay yük taşıma kapasitesini arttırır ve
yapının yanal rijitliğine katkı sağlamaktır. Çelik diyagonal çaprazların yapı
sistemindeki yerleşimi, yapı sistemin performansını etkileyen önemli
etkenlerden birisidir. Bu çalışma, çelik çaprazların yerleşimdeki optimum
dağılımın belirlenmesi için yapay arı koloni optimizasyon tekniği kullanılarak
yeni bir algoritma sunulmuştur. Tepe deplasmanına ve taban kesme kuvvetine
bağlı transfer fonksiyonları amaç fonksiyonu olarak seçilmiştir. Buradaki temel
amaç, belirlenen kısıtlar altında amaç fonksiyonlarının minimize edilmesidir.
Tasarım değişkeni olarak her kata yerleştirilen çelik çaprazların rijitlikleri
seçilmiştir. Ayrıca, çelik çaprazların toplam rijitliği, optimizasyon
probleminin aktif kısıtlı olarak belirlenmiştir. Hazırlanan optimizasyon algoritmasının
performansının test edilmesi amacıyla 20 katlı çelik yapı modeli oluşturulmuş
ve El Centro depremi kaydı kullanılarak zaman tanım alanında dinamik analiz
yapılmıştır. Yapay arı koloni algoritması kullanılarak elde edilen optimum
çelik çapraz yerleşimi, düzgün dağılım ile karşılaştırılmıştır. Bu bulgular
göstermiştir ki, tasarlanan algoritma ile belirlenen optimum diyagonal çelik
çapraz dağılımı, her bir amaç fonksiyonu için tatmin edici sonuçlar vermiştir.

References

  • Aydin, E. and Boduroglu, M. H. (2008) Optimal placement of steel diagonal braces for upgrading the seismic capacity of the existing structures and its comparison with optimal dampers, J.Constr.SteelRes., 64(1), 72-86. doi: 10.1016/j.jcsr.2007.04.005
  • Aydin, E., Boduroglu, M. H. and Guney, D. (2007) Optimal damper distribution for seismic rehabilitation of planar building structures, Eng. Struct., 29(2), 176-185. doi: 10.1016/j.engstruct.2006.04.016
  • Aydin , E., Sonmez, M. and Karabork, T. (2015). Optimal placement of elastic steel diagonal braces using artificial bee colony algorithm, Steel and Composite Structures, 19(2), 349-368. doi:10.12989/scs.2015.19.2.349
  • Bansal, J. C., Sharma, H. and Jadon, S. S. (2013) Artificial bee colony algorithm: A survey, Int. J. Adv. Intell. Paradigms, 5(1-2), 123-159. doi: 10.1504/IJAIP.2013.054681
  • Bartera, F. and Giacchetti, R. (2003) Steel dissipating braces for upgrading existing building frames, J.Constr. Steel Res., 60(3-5), 751-769. doi: 10.1016/S0143-974X(03)00141
  • Cimellaro, G. P. (2007) Simultaneous stiffness-damping optimization of structures with respect to acceleration displacement and base shear, Eng. Struct., 29(11), 2853-2870. doi: 10.1016/j.engstruct.2007.01.001
  • Colunga, A. T. and Vergara, A. A. (1997) Comparative study on the seismic retrofit of a mid-rise steel building: steel bracing vs. energy dissipation, Earthq. Eng. Struct. D., 26(6), 637-655. doi: 10.1002/(SICI)1096-9845(199706)26:6
  • Downs, R. E., Hjelmstat, K. D. and Foutch, D. A. (1991). Evaluation of two RC building retrofit with steel bracing, IL: Department of Civil Engineering, University of Illinois at.
  • Frisch, V. K. (1967) Dance Language and Orientation of Bees. Cambridge: Harvard University Press. İsbn: 9780674418776
  • Gorgulu, T., Tama, Y. S., Yilmaz, S. and Kaplan, H. (2012) Strengthening of reinforced concrete structures with external steel shear walls, J. Constr. Steel Res., 70, 226-235. doi: 10.1016/j.jcsr.2011.08.010
  • Karaboga, D. (2005) An idea based on honey bee swarm for numerical optimization, Kayseri: Computer Engineering Department: Computer Engineering Department, Erciyes University.
  • Karaboga, D. and Akay, B. (2009) Survey: Algorithms simulating bee swarm intelligence, Artif. Intell.Rev., 31, 61-85. doi: 10.1007/s10462-009-9127-4
  • Karaboga, D. and Basturk, B. (2008) On the performance of artificial bee Colony (ABC), Appl. Soft.Comp., 8, 687-697. doi: 10.1016/j.asoc.2007.05.007
  • Karaboga, D., Gorkemli, B., Ozturk, C. and Karaboga, N. (2014) A comprehensive survey: Artificial bee colony (ABC) algorithm and applications, Artif. Intell. Rev., 42, 21-57. doi: 10.1007/s10462-012-9328-0
  • Kawamata, S. and Masaki, Q. (1980) Strengthening effect of eccentric steel diagonal braces to existing RC frames, Proceedings of the 7th World Conference on Earthquake Engineering, İstanbul, Türkiye.
  • Kennedy, J., Eberhart, R. C. and Shi, Y. (2001) Swarm Intelligence, San Francisco: Morgan Kaufmann Publishers. Isbn:1-55860-595-9
  • Lee, K. S. and Geem, Z. W. (2004) A new structural optimization method based on the harmony search algorithm, Comput. Struct., 82(9-10), 781-798. doi: 10.1016/j.compstruc.2004.01.002
  • Lemmens, N., Jong, S., Tuyls, K. and Nowe, A. (2007) Bee behaviour in multi-agent systems: A bee foraging algorithm, Proceedings of the 7th ALAMAS Symposium, The Hague.
  • Maheri, M. R. and Sahebi, A. (1997) Use of steel bracing in reinforced concrete frames, Eng. Struct., 19(12), 1018-1024. doi: 10.1016/S0141-0296(97)00041-2
  • Miranda, E. (1991) Seismic evaluation and upgrading of existing structures, CA, USA: University of California at Berkeley.
  • Mitchell, D. and Dandurand, A. (1988) Repair and upgrading of concrete structures in Mexico City after the 1985 earthquake, Can. J. Civil Eng., 15(6), 1052-1066. doi: 10.1139/l88-138
  • Pham, D. T., Granbarzadeh, A., Koc, E. and Otri, S. R. (2006) The bee algorithm– A novel tool for complex optimization problems, Proceedings of Intelligent Production Machines and Systems (IPROMS). Cardiff.
  • Sonmez, M. (2011a) Artificial bee colony algorithm for optimization of truss structures, Appl. Soft.Comput. J., 11(2), 2406-2418. doi: 10.1016/j.asoc.2010.09.003
  • Sonmez, M. (2011b) Discrete optimum design of truss structures using artificial bee colony algorithm, Struct. Multidisc. Optim., 43(1), 85-97. doi: 10.1007/s00158-010-0551-5
  • Takewaki, I. (1999) Displacement-acceleration control via stiffness-damping collaboration, Earthq. Eng. Struct. D., 28(12), 1567-1585. doi: 10.1002/(SICI)1096-9845(199912)28:12
  • Takewaki, I. (2000) Optimum damper placement for planar building frames using transfer functions, Struct. Mult.-Disp. Optim., 20(4), 280-287. doi: 10.1007/s001580050158
  • Turker, T. and Bayraktar, A. (2011) Experimental and numerical investigation of brace configuration effects on steel structures, J. Construct. Steel Res., 67(5), 854-865. doi: 10.1016/j.jcsr.2010.12.008
  • Valle, C. E. (1980) Some lessons from the March 14, 1979 earthquake in Mexico City, Proceedings of 7th World Conference on Earthquake Engineering, İstanbul.
  • Valle, C. E., Foutch, D. A., Hjelmstad, K. D., Gutierrez, E. F. and Colunga, A. T. (1988) Seismic retrofit of RC building: A case study, Proceedings of 9th World Conference on Earthquake Engineering, Kyoto,Tokyo.
  • Wang, D. (2006) Optimal design of structural support positions for minimizing maximal bending moment, Finite Elem. Anal. Des., 43, 95-102. doi: 10.1016/j.finel.2006.07.004
  • Yamamato, Y. and Aoyama, H. (1987) Seismic behaviour of existing RC frame strengthened with retrofitting steel elements, Proceedings of U.S.-Japan Seminar on Repair and Retrofit of Existing Structures, Tsukuba, Japan.

Optimizing Diagonal Steel Braces Used in Steel Structures via Artificial Bee Colony Algorithm

Year 2018, Volume: 23 Issue: 1, 51 - 64, 11.04.2018
https://doi.org/10.17482/uumfd.414427

Abstract

Steel diagonal
braces (SDB) systems, are one of widely used methods for improving the seismic
performance of existing structures or new construction of earthquake-resistant
design. These systems contribute to the stiffness of the structure as well as
increased lateral load carrying capacity of the structure. Placement on the
steel diagonal braces is one of the significant factors affecting the
performance of the system. In this study, a new algorithm to find the optimal
distribution of SDB using artificial bee colony optimization technique is
presented. The objective functions are chosen as the transfer function
amplitude of the top displacement and the transfer function amplitude of the
base shear force. The main purpose is to minimize the objective function under
specific constraints. Stiffness parameters of steel braces located on each
floor is chosen as the design variables. Additionally, the sum of the stiffness
parameter of the SDB is accepted as an active constraint. In order to test the
response the performance of results obtained from ABC, 20 story steel braced
building is modeled and analyzed using time history methods under the El-Centro
earthquake. Optimum SDB location obtained using artificial bee colony algorithm
is compared to uniform distribution of SDB’s. The findings show that, the
optimum SDB distribution give satisfactory results for each of the objective
functions.

References

  • Aydin, E. and Boduroglu, M. H. (2008) Optimal placement of steel diagonal braces for upgrading the seismic capacity of the existing structures and its comparison with optimal dampers, J.Constr.SteelRes., 64(1), 72-86. doi: 10.1016/j.jcsr.2007.04.005
  • Aydin, E., Boduroglu, M. H. and Guney, D. (2007) Optimal damper distribution for seismic rehabilitation of planar building structures, Eng. Struct., 29(2), 176-185. doi: 10.1016/j.engstruct.2006.04.016
  • Aydin , E., Sonmez, M. and Karabork, T. (2015). Optimal placement of elastic steel diagonal braces using artificial bee colony algorithm, Steel and Composite Structures, 19(2), 349-368. doi:10.12989/scs.2015.19.2.349
  • Bansal, J. C., Sharma, H. and Jadon, S. S. (2013) Artificial bee colony algorithm: A survey, Int. J. Adv. Intell. Paradigms, 5(1-2), 123-159. doi: 10.1504/IJAIP.2013.054681
  • Bartera, F. and Giacchetti, R. (2003) Steel dissipating braces for upgrading existing building frames, J.Constr. Steel Res., 60(3-5), 751-769. doi: 10.1016/S0143-974X(03)00141
  • Cimellaro, G. P. (2007) Simultaneous stiffness-damping optimization of structures with respect to acceleration displacement and base shear, Eng. Struct., 29(11), 2853-2870. doi: 10.1016/j.engstruct.2007.01.001
  • Colunga, A. T. and Vergara, A. A. (1997) Comparative study on the seismic retrofit of a mid-rise steel building: steel bracing vs. energy dissipation, Earthq. Eng. Struct. D., 26(6), 637-655. doi: 10.1002/(SICI)1096-9845(199706)26:6
  • Downs, R. E., Hjelmstat, K. D. and Foutch, D. A. (1991). Evaluation of two RC building retrofit with steel bracing, IL: Department of Civil Engineering, University of Illinois at.
  • Frisch, V. K. (1967) Dance Language and Orientation of Bees. Cambridge: Harvard University Press. İsbn: 9780674418776
  • Gorgulu, T., Tama, Y. S., Yilmaz, S. and Kaplan, H. (2012) Strengthening of reinforced concrete structures with external steel shear walls, J. Constr. Steel Res., 70, 226-235. doi: 10.1016/j.jcsr.2011.08.010
  • Karaboga, D. (2005) An idea based on honey bee swarm for numerical optimization, Kayseri: Computer Engineering Department: Computer Engineering Department, Erciyes University.
  • Karaboga, D. and Akay, B. (2009) Survey: Algorithms simulating bee swarm intelligence, Artif. Intell.Rev., 31, 61-85. doi: 10.1007/s10462-009-9127-4
  • Karaboga, D. and Basturk, B. (2008) On the performance of artificial bee Colony (ABC), Appl. Soft.Comp., 8, 687-697. doi: 10.1016/j.asoc.2007.05.007
  • Karaboga, D., Gorkemli, B., Ozturk, C. and Karaboga, N. (2014) A comprehensive survey: Artificial bee colony (ABC) algorithm and applications, Artif. Intell. Rev., 42, 21-57. doi: 10.1007/s10462-012-9328-0
  • Kawamata, S. and Masaki, Q. (1980) Strengthening effect of eccentric steel diagonal braces to existing RC frames, Proceedings of the 7th World Conference on Earthquake Engineering, İstanbul, Türkiye.
  • Kennedy, J., Eberhart, R. C. and Shi, Y. (2001) Swarm Intelligence, San Francisco: Morgan Kaufmann Publishers. Isbn:1-55860-595-9
  • Lee, K. S. and Geem, Z. W. (2004) A new structural optimization method based on the harmony search algorithm, Comput. Struct., 82(9-10), 781-798. doi: 10.1016/j.compstruc.2004.01.002
  • Lemmens, N., Jong, S., Tuyls, K. and Nowe, A. (2007) Bee behaviour in multi-agent systems: A bee foraging algorithm, Proceedings of the 7th ALAMAS Symposium, The Hague.
  • Maheri, M. R. and Sahebi, A. (1997) Use of steel bracing in reinforced concrete frames, Eng. Struct., 19(12), 1018-1024. doi: 10.1016/S0141-0296(97)00041-2
  • Miranda, E. (1991) Seismic evaluation and upgrading of existing structures, CA, USA: University of California at Berkeley.
  • Mitchell, D. and Dandurand, A. (1988) Repair and upgrading of concrete structures in Mexico City after the 1985 earthquake, Can. J. Civil Eng., 15(6), 1052-1066. doi: 10.1139/l88-138
  • Pham, D. T., Granbarzadeh, A., Koc, E. and Otri, S. R. (2006) The bee algorithm– A novel tool for complex optimization problems, Proceedings of Intelligent Production Machines and Systems (IPROMS). Cardiff.
  • Sonmez, M. (2011a) Artificial bee colony algorithm for optimization of truss structures, Appl. Soft.Comput. J., 11(2), 2406-2418. doi: 10.1016/j.asoc.2010.09.003
  • Sonmez, M. (2011b) Discrete optimum design of truss structures using artificial bee colony algorithm, Struct. Multidisc. Optim., 43(1), 85-97. doi: 10.1007/s00158-010-0551-5
  • Takewaki, I. (1999) Displacement-acceleration control via stiffness-damping collaboration, Earthq. Eng. Struct. D., 28(12), 1567-1585. doi: 10.1002/(SICI)1096-9845(199912)28:12
  • Takewaki, I. (2000) Optimum damper placement for planar building frames using transfer functions, Struct. Mult.-Disp. Optim., 20(4), 280-287. doi: 10.1007/s001580050158
  • Turker, T. and Bayraktar, A. (2011) Experimental and numerical investigation of brace configuration effects on steel structures, J. Construct. Steel Res., 67(5), 854-865. doi: 10.1016/j.jcsr.2010.12.008
  • Valle, C. E. (1980) Some lessons from the March 14, 1979 earthquake in Mexico City, Proceedings of 7th World Conference on Earthquake Engineering, İstanbul.
  • Valle, C. E., Foutch, D. A., Hjelmstad, K. D., Gutierrez, E. F. and Colunga, A. T. (1988) Seismic retrofit of RC building: A case study, Proceedings of 9th World Conference on Earthquake Engineering, Kyoto,Tokyo.
  • Wang, D. (2006) Optimal design of structural support positions for minimizing maximal bending moment, Finite Elem. Anal. Des., 43, 95-102. doi: 10.1016/j.finel.2006.07.004
  • Yamamato, Y. and Aoyama, H. (1987) Seismic behaviour of existing RC frame strengthened with retrofitting steel elements, Proceedings of U.S.-Japan Seminar on Repair and Retrofit of Existing Structures, Tsukuba, Japan.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Turan Karabörk

Mustafa Sönmez This is me

Ersin Aydın

Tülin Çelik

Yakup Bölükbaş

Publication Date April 11, 2018
Submission Date April 8, 2016
Acceptance Date February 12, 2018
Published in Issue Year 2018 Volume: 23 Issue: 1

Cite

APA Karabörk, T., Sönmez, M., Aydın, E., Çelik, T., et al. (2018). ÇELİK YAPILARDA KULLANILAN DİYAGONAL ÇELİK ÇAPRAZLARIN YAPAY ARI KOLONİ ALGORİTMASI İLE OPTİMİZASYONU. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(1), 51-64. https://doi.org/10.17482/uumfd.414427
AMA Karabörk T, Sönmez M, Aydın E, Çelik T, Bölükbaş Y. ÇELİK YAPILARDA KULLANILAN DİYAGONAL ÇELİK ÇAPRAZLARIN YAPAY ARI KOLONİ ALGORİTMASI İLE OPTİMİZASYONU. UUJFE. April 2018;23(1):51-64. doi:10.17482/uumfd.414427
Chicago Karabörk, Turan, Mustafa Sönmez, Ersin Aydın, Tülin Çelik, and Yakup Bölükbaş. “ÇELİK YAPILARDA KULLANILAN DİYAGONAL ÇELİK ÇAPRAZLARIN YAPAY ARI KOLONİ ALGORİTMASI İLE OPTİMİZASYONU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23, no. 1 (April 2018): 51-64. https://doi.org/10.17482/uumfd.414427.
EndNote Karabörk T, Sönmez M, Aydın E, Çelik T, Bölükbaş Y (April 1, 2018) ÇELİK YAPILARDA KULLANILAN DİYAGONAL ÇELİK ÇAPRAZLARIN YAPAY ARI KOLONİ ALGORİTMASI İLE OPTİMİZASYONU. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23 1 51–64.
IEEE T. Karabörk, M. Sönmez, E. Aydın, T. Çelik, and Y. Bölükbaş, “ÇELİK YAPILARDA KULLANILAN DİYAGONAL ÇELİK ÇAPRAZLARIN YAPAY ARI KOLONİ ALGORİTMASI İLE OPTİMİZASYONU”, UUJFE, vol. 23, no. 1, pp. 51–64, 2018, doi: 10.17482/uumfd.414427.
ISNAD Karabörk, Turan et al. “ÇELİK YAPILARDA KULLANILAN DİYAGONAL ÇELİK ÇAPRAZLARIN YAPAY ARI KOLONİ ALGORİTMASI İLE OPTİMİZASYONU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23/1 (April 2018), 51-64. https://doi.org/10.17482/uumfd.414427.
JAMA Karabörk T, Sönmez M, Aydın E, Çelik T, Bölükbaş Y. ÇELİK YAPILARDA KULLANILAN DİYAGONAL ÇELİK ÇAPRAZLARIN YAPAY ARI KOLONİ ALGORİTMASI İLE OPTİMİZASYONU. UUJFE. 2018;23:51–64.
MLA Karabörk, Turan et al. “ÇELİK YAPILARDA KULLANILAN DİYAGONAL ÇELİK ÇAPRAZLARIN YAPAY ARI KOLONİ ALGORİTMASI İLE OPTİMİZASYONU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 23, no. 1, 2018, pp. 51-64, doi:10.17482/uumfd.414427.
Vancouver Karabörk T, Sönmez M, Aydın E, Çelik T, Bölükbaş Y. ÇELİK YAPILARDA KULLANILAN DİYAGONAL ÇELİK ÇAPRAZLARIN YAPAY ARI KOLONİ ALGORİTMASI İLE OPTİMİZASYONU. UUJFE. 2018;23(1):51-64.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.