Research Article
BibTex RIS Cite

DENTAL İMPLANT ÖLÇÜLERİNİN YORULMA DAVRANIŞINA ETKİSİ: SAYISAL BİR YAKLAŞIM

Year 2018, Volume: 23 Issue: 3, 249 - 260, 31.12.2018
https://doi.org/10.17482/uumfd.299899

Abstract

Bu çalışmada implant şeklinin yorulma
davranışına etkisi sonlu elemanlar metoduyla araştırılmıştır. İmplant malzemesi
olarak Ti6Al4V kullanılmıştır. Çalışmada diş dibi kalınlığı, diş üstü
kalınlığı, diş yüksekliği, diş hatvesi, implant boyu, implant çapı, pah boyu,
pahın yarı çapı ve oyuk boyu değerlerinin değişiminin implant ömrüne etkisi
araştırılmıştır. Modeller ISO 14801 standardında belirtilen kriterlere göre ANSYS
programında yorulma analizine tabi tutulmuştur. Sonuçta dental implantların
yorulma davranışını en çok etkileyen boyut değerlerinin implant çapı ve implant
boyu olduğu görülmüştür. İmplant vidası yorulma ömrü üzerindeki en etkili
parametreler hatve ve diş yüksekliğidir.

References

  • Ao J., Li T., Liu Y., Ding Y., Wu G., Hua K., Kong L. Optimal design of thread height and width on an immediately loaded cylinder implant: A finite element analysis, Computers in Biology and Medicine 2010; 40: 681-686 doi:10.1016/j.compbiomed.2009.10.007.
  • Ausiello P., Franciosa P., Martorelli M.,Watts D.C. Effects of thread features in osseo-integrated titanium implants using a statistics-based finite element method. Dental Materials 2012; 28: 919-927. doi: 10.1016/j.dental.2012.04.035
  • Barbier L., Vander Sloten J., Krzesinski G., Schepers E., Van Der Perre G. Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog. Journal of Oral Rehabilitation.1998;25:847-858.doi: 10.1046/j.13652842.1998.00318.x
  • Chun H-J., S.-Y. Cheong S-Y., Han J-H., Heo S-J., Chung J-P., Rhyu I-C., Choı Y-C., Baik H-K., Ku Y. ve Kım M-H. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. Journal of Oral Rehabilitation 2002; 29: 565–574. doi: 10.1046/j.1365-2842.2002.00891.x
  • Daas, M., Dubois, G., Bonnet, A. S., Lipinski, P., Rignon-Bret, C. A complete finite element 224 model of a mandibular implant retained overdenture with two implants: Comparison between rigid and 225 resilient attachment configurations. Medical Engineering & Physics 2008; 30: 218-225. doi: 10.1016/j.medengphy.2007.02.005
  • Dilek O., Tezulas E., Dincel M. Required minimum primary stability and torque values for immediate loading of mini dentalimplants: an experimentalstudy in nonviable bovine femoral bone. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 2008; 105: 20-27. doi: 10.1016/j.tripleo.2007.10.003.
  • Dittmer S., Dittmer M.P., Kohorst P., Jendras M., Borchers L., Stiesch M. Effect of implant–abutment connection design on load bearing capacity and failure mode of implants. Journal of Prosthodontics 2011; 20: 510-516. doi: 10.1111/j.1532-849X.2011.00758.x
  • Djebbar N., Serier B., Bachir Bouiadjra B., Benbarek S., Drai A. Analysis of the effect of load direction on the stress distribution in dental implant. Materials & Design 2010; 31: 2097-2101. doi: 10.1016/j.matdes.2009.10.042
  • Ekici B. Numerical Analysis of a dental system in three-dimension. Advances in Engineering Software 2002; 33: 109-113. doi: 10.1016/S0965-9978(01)00056-4
  • Figueiredo R.B., Barbosa E. R. C., Zhao X., Yang X., Liu X., Cetlin P.R., Langdon T.G. Improving the fatigue behavior of dental implants through processing commercial purity titanium by equal-channel angular pressing. Materials Science and Engineering: A 2014; 619: 312-318. doi: 10.1016/j.msea.2014.09.099
  • Geringer A., Diebels S., Nothdurft F.P. Influence of super structure geometry on the mechanical behavior of zirconia implant abutments: a finite element analysis. Biomedizinische Technik. Biomedical engineering 2014; 59(6):501-6. doi: 10.1515/bmt-2013-0088.
  • ISO 14801: Dentistry – Implants – Dynamic fatigue test for endosseous dental implants, 2007.
  • Kaman M. O., Celik N., Kilic F. Effects of the dimensions of threads on stress distributions of the dental implants. Turkish Journal of Science and Technology. 2012; 7(2):, 153-166.
  • Karl M., Kelly R. Influence of loading frequency on implant failure under cyclic fatigue conditions, Dental Materials 2009; 25: 1426-1432. doi: 10.1016/j.dental.2009.06.015
  • Kayabasi O., Yuzbasioglu E., Erzincanli F. Static, dynamic and fatigue behaviors of dental implant using finite element method. Advances in Engineering Software 2006; 3: 649-658. doi:10.1016/j.advengsoft.2006.02.004
  • Kitagawa, T., Tanimoto, Y., Odaki, M., Nemoto, K., Aida, M. Influence of implant/abutment joint designs on abutment screw loosening in a dental implant system. Journal of Biomedical Materials Research Part B-Applied. Biomaterials 2005; 75, 457–463. doi: 10.1002/jbm.b.30328
  • Kong L., Gu Z., Hu K., Zhou H., Liu Y., Liu B. Optimization of the implant diameter and length in type B/2 bone for improved biomechanical properties: A three-dimensional finite element analysis, Advances in Engineering Software. 2009; 40: 935-940. doi: 10.1016/j.advengsoft.2008.12.010
  • Li T., Hub K., Cheng L., Ding Y., Ding Y., Shao J., Kong L. Optimum selection of the dental implant diameter and length in the posterior mandible with poor bone quality – A 3D finite element analysis, Applied Mathematical Modelling. 2011; 35: 446-456. doi: 10.1016/j.apm.2010.07.008
  • Lin D., Li Q., Li W., Swain M. Bone remodeling ınduced by dental ımplants of functionally graded materials. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2010; 92: 430-438. doi: 10.1002/jbm.b.31531
  • Meriç G., Erkmen E., Kurt A., Tunç Y., Eser A., Influence of prosthesis type and material on the stress distribution in bone around implants: A 3-dimensional finite element analysis. Journal of Dental Sciences2011; 5(3):156−165. doi: 10.1016/j.jds.2011.02.005
  • Moraes SL, Pellizzer EP, Verri FR, Santiago JF Jr, Silva JV. Three-dimensional finite element analysis of stress distribution in retention screws of different crown-implant ratios. Computer Methods in Biomechanics and Biomedical Engineering. 2015; 18: 689-696. doi: 10.1080/10255842.2013.820719
  • Park S., Won S.Y., Bae T.S., Song K.Y., Park C.W., Eom T.G. ve Jeong C.M. Fatigue characteristics of five types of implant-abutment joint designs. Metals and Materials International 2008; 14: 133-138. doi: 10.3365/met.mat.2008.04.133
  • Prados-Privado M., Prados-Frutos J.C., Manchón Á., Rojo R., Felice P., Bea J.A.Dental implants fatigue as a possible failure of implantologic treatment: the importance of randomness in fatigue behaviour. BioMed Research International 2015; 825402. doi: 10.1155/2015/825402
  • Schiefer H., Bram M., Buchkremer H.P., Stover D. Mechanical examinations on dental implants with porous titanium coating. Journal of Materials Science: Materials in Medicine 2009; 20: 1763–1770. doi: 10.1007/s10856-009-3733-1
  • Sevilla P., Sandino C., Arciniegas M., Martinez-Gomis J., Peraire M., Gil F.J.. Evaluting mechanical properties and degradation of YTZP dental implants, Materials Science and Engineering C: Materials for Biological Applications. 2010; 30: 14-19. doi: 10.1016/j.msec.2009.08.002
  • Silva N.R.F.A., Coelho P.G., Fernandes C.A.O., Navarro J.M., Dias R.A., Thompson V.P.. Reliability of one-piece ceramic implant. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2008; 419-426. doi: 10.1002/jbm.b.31113
  • Şahin S., Çehreli M. C., Yalçın E., The influence of functional forces on the biomechanics of implant-supported prostheses-A review. Journal of Dentistry 2002; 20: 271−282. doi: 10.1016/S0300-5712(02)00065-9
  • Topkaya H. Dental implant uygulamalarında yorulma davranışının sayısal olarak incelenmesi”, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2014.
  • Yang J., Xiang H.J. A three-dimensional finite element study on the biomechanical behavior of an FGBM dental implant in surrounding bone. Journal of Biomechanics. 2007; 40: 2377–2385. doi: 10.1016/j.jbiomech.2006.11.019.

Effect of Dental Implant Dimensions on Fatigue Behaviour: A Numerical Approach

Year 2018, Volume: 23 Issue: 3, 249 - 260, 31.12.2018
https://doi.org/10.17482/uumfd.299899

Abstract

In this study, the effect of the implant shape
on fatigue behaviour was investigated with the finite element method. The
implant material used was Ti6Al4V.  The
examination focus on the effect on the implant life with respect to changes in
the crest and root dimension, thread depth, thread pitch, implant length,
implant diameter, chamfer length, chamfer radius, and groove length to implant
length ratio. Models were subjected to fatigue analysis according to ISO 14801
standard with ANSYS finite element software. The mean stress correction theory
is chosen in fatigue life solutions.  As
a result, the parameters seen to have the most effect on dental implant fatigue
behaviour were the implant length and diameter. The parameters with the most
effect on the implant screw fatigue were pitch and the height of the tooth.

References

  • Ao J., Li T., Liu Y., Ding Y., Wu G., Hua K., Kong L. Optimal design of thread height and width on an immediately loaded cylinder implant: A finite element analysis, Computers in Biology and Medicine 2010; 40: 681-686 doi:10.1016/j.compbiomed.2009.10.007.
  • Ausiello P., Franciosa P., Martorelli M.,Watts D.C. Effects of thread features in osseo-integrated titanium implants using a statistics-based finite element method. Dental Materials 2012; 28: 919-927. doi: 10.1016/j.dental.2012.04.035
  • Barbier L., Vander Sloten J., Krzesinski G., Schepers E., Van Der Perre G. Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog. Journal of Oral Rehabilitation.1998;25:847-858.doi: 10.1046/j.13652842.1998.00318.x
  • Chun H-J., S.-Y. Cheong S-Y., Han J-H., Heo S-J., Chung J-P., Rhyu I-C., Choı Y-C., Baik H-K., Ku Y. ve Kım M-H. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. Journal of Oral Rehabilitation 2002; 29: 565–574. doi: 10.1046/j.1365-2842.2002.00891.x
  • Daas, M., Dubois, G., Bonnet, A. S., Lipinski, P., Rignon-Bret, C. A complete finite element 224 model of a mandibular implant retained overdenture with two implants: Comparison between rigid and 225 resilient attachment configurations. Medical Engineering & Physics 2008; 30: 218-225. doi: 10.1016/j.medengphy.2007.02.005
  • Dilek O., Tezulas E., Dincel M. Required minimum primary stability and torque values for immediate loading of mini dentalimplants: an experimentalstudy in nonviable bovine femoral bone. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 2008; 105: 20-27. doi: 10.1016/j.tripleo.2007.10.003.
  • Dittmer S., Dittmer M.P., Kohorst P., Jendras M., Borchers L., Stiesch M. Effect of implant–abutment connection design on load bearing capacity and failure mode of implants. Journal of Prosthodontics 2011; 20: 510-516. doi: 10.1111/j.1532-849X.2011.00758.x
  • Djebbar N., Serier B., Bachir Bouiadjra B., Benbarek S., Drai A. Analysis of the effect of load direction on the stress distribution in dental implant. Materials & Design 2010; 31: 2097-2101. doi: 10.1016/j.matdes.2009.10.042
  • Ekici B. Numerical Analysis of a dental system in three-dimension. Advances in Engineering Software 2002; 33: 109-113. doi: 10.1016/S0965-9978(01)00056-4
  • Figueiredo R.B., Barbosa E. R. C., Zhao X., Yang X., Liu X., Cetlin P.R., Langdon T.G. Improving the fatigue behavior of dental implants through processing commercial purity titanium by equal-channel angular pressing. Materials Science and Engineering: A 2014; 619: 312-318. doi: 10.1016/j.msea.2014.09.099
  • Geringer A., Diebels S., Nothdurft F.P. Influence of super structure geometry on the mechanical behavior of zirconia implant abutments: a finite element analysis. Biomedizinische Technik. Biomedical engineering 2014; 59(6):501-6. doi: 10.1515/bmt-2013-0088.
  • ISO 14801: Dentistry – Implants – Dynamic fatigue test for endosseous dental implants, 2007.
  • Kaman M. O., Celik N., Kilic F. Effects of the dimensions of threads on stress distributions of the dental implants. Turkish Journal of Science and Technology. 2012; 7(2):, 153-166.
  • Karl M., Kelly R. Influence of loading frequency on implant failure under cyclic fatigue conditions, Dental Materials 2009; 25: 1426-1432. doi: 10.1016/j.dental.2009.06.015
  • Kayabasi O., Yuzbasioglu E., Erzincanli F. Static, dynamic and fatigue behaviors of dental implant using finite element method. Advances in Engineering Software 2006; 3: 649-658. doi:10.1016/j.advengsoft.2006.02.004
  • Kitagawa, T., Tanimoto, Y., Odaki, M., Nemoto, K., Aida, M. Influence of implant/abutment joint designs on abutment screw loosening in a dental implant system. Journal of Biomedical Materials Research Part B-Applied. Biomaterials 2005; 75, 457–463. doi: 10.1002/jbm.b.30328
  • Kong L., Gu Z., Hu K., Zhou H., Liu Y., Liu B. Optimization of the implant diameter and length in type B/2 bone for improved biomechanical properties: A three-dimensional finite element analysis, Advances in Engineering Software. 2009; 40: 935-940. doi: 10.1016/j.advengsoft.2008.12.010
  • Li T., Hub K., Cheng L., Ding Y., Ding Y., Shao J., Kong L. Optimum selection of the dental implant diameter and length in the posterior mandible with poor bone quality – A 3D finite element analysis, Applied Mathematical Modelling. 2011; 35: 446-456. doi: 10.1016/j.apm.2010.07.008
  • Lin D., Li Q., Li W., Swain M. Bone remodeling ınduced by dental ımplants of functionally graded materials. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2010; 92: 430-438. doi: 10.1002/jbm.b.31531
  • Meriç G., Erkmen E., Kurt A., Tunç Y., Eser A., Influence of prosthesis type and material on the stress distribution in bone around implants: A 3-dimensional finite element analysis. Journal of Dental Sciences2011; 5(3):156−165. doi: 10.1016/j.jds.2011.02.005
  • Moraes SL, Pellizzer EP, Verri FR, Santiago JF Jr, Silva JV. Three-dimensional finite element analysis of stress distribution in retention screws of different crown-implant ratios. Computer Methods in Biomechanics and Biomedical Engineering. 2015; 18: 689-696. doi: 10.1080/10255842.2013.820719
  • Park S., Won S.Y., Bae T.S., Song K.Y., Park C.W., Eom T.G. ve Jeong C.M. Fatigue characteristics of five types of implant-abutment joint designs. Metals and Materials International 2008; 14: 133-138. doi: 10.3365/met.mat.2008.04.133
  • Prados-Privado M., Prados-Frutos J.C., Manchón Á., Rojo R., Felice P., Bea J.A.Dental implants fatigue as a possible failure of implantologic treatment: the importance of randomness in fatigue behaviour. BioMed Research International 2015; 825402. doi: 10.1155/2015/825402
  • Schiefer H., Bram M., Buchkremer H.P., Stover D. Mechanical examinations on dental implants with porous titanium coating. Journal of Materials Science: Materials in Medicine 2009; 20: 1763–1770. doi: 10.1007/s10856-009-3733-1
  • Sevilla P., Sandino C., Arciniegas M., Martinez-Gomis J., Peraire M., Gil F.J.. Evaluting mechanical properties and degradation of YTZP dental implants, Materials Science and Engineering C: Materials for Biological Applications. 2010; 30: 14-19. doi: 10.1016/j.msec.2009.08.002
  • Silva N.R.F.A., Coelho P.G., Fernandes C.A.O., Navarro J.M., Dias R.A., Thompson V.P.. Reliability of one-piece ceramic implant. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2008; 419-426. doi: 10.1002/jbm.b.31113
  • Şahin S., Çehreli M. C., Yalçın E., The influence of functional forces on the biomechanics of implant-supported prostheses-A review. Journal of Dentistry 2002; 20: 271−282. doi: 10.1016/S0300-5712(02)00065-9
  • Topkaya H. Dental implant uygulamalarında yorulma davranışının sayısal olarak incelenmesi”, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2014.
  • Yang J., Xiang H.J. A three-dimensional finite element study on the biomechanical behavior of an FGBM dental implant in surrounding bone. Journal of Biomechanics. 2007; 40: 2377–2385. doi: 10.1016/j.jbiomech.2006.11.019.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Hüsna Topkaya

Mete Onur Kaman

Publication Date December 31, 2018
Submission Date March 24, 2017
Acceptance Date November 30, 2018
Published in Issue Year 2018 Volume: 23 Issue: 3

Cite

APA Topkaya, H., & Kaman, M. O. (2018). Effect of Dental Implant Dimensions on Fatigue Behaviour: A Numerical Approach. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(3), 249-260. https://doi.org/10.17482/uumfd.299899
AMA Topkaya H, Kaman MO. Effect of Dental Implant Dimensions on Fatigue Behaviour: A Numerical Approach. UUJFE. December 2018;23(3):249-260. doi:10.17482/uumfd.299899
Chicago Topkaya, Hüsna, and Mete Onur Kaman. “Effect of Dental Implant Dimensions on Fatigue Behaviour: A Numerical Approach”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23, no. 3 (December 2018): 249-60. https://doi.org/10.17482/uumfd.299899.
EndNote Topkaya H, Kaman MO (December 1, 2018) Effect of Dental Implant Dimensions on Fatigue Behaviour: A Numerical Approach. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23 3 249–260.
IEEE H. Topkaya and M. O. Kaman, “Effect of Dental Implant Dimensions on Fatigue Behaviour: A Numerical Approach”, UUJFE, vol. 23, no. 3, pp. 249–260, 2018, doi: 10.17482/uumfd.299899.
ISNAD Topkaya, Hüsna - Kaman, Mete Onur. “Effect of Dental Implant Dimensions on Fatigue Behaviour: A Numerical Approach”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23/3 (December 2018), 249-260. https://doi.org/10.17482/uumfd.299899.
JAMA Topkaya H, Kaman MO. Effect of Dental Implant Dimensions on Fatigue Behaviour: A Numerical Approach. UUJFE. 2018;23:249–260.
MLA Topkaya, Hüsna and Mete Onur Kaman. “Effect of Dental Implant Dimensions on Fatigue Behaviour: A Numerical Approach”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 23, no. 3, 2018, pp. 249-60, doi:10.17482/uumfd.299899.
Vancouver Topkaya H, Kaman MO. Effect of Dental Implant Dimensions on Fatigue Behaviour: A Numerical Approach. UUJFE. 2018;23(3):249-60.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.