Research Article
BibTex RIS Cite

Modeling the Electrodeposition of Ni/TiC Nanocomposites in the Presence of a Cationic Dispersant

Year 2019, Volume: 24 Issue: 1, 367 - 382, 30.04.2019
https://doi.org/10.17482/uumfd.436566

Abstract

The electrodeposition of Ni/TiC nanocomposites
on a rotating disk electrode in the presence of a cationic dispersant is
modeled. In the proposed mechanism, TiC nanoparticles are transported through
the diffusion layer, adsorbed on the electrode surface and incorporated into
the growing nickel film if the residence time a particle on the surface exceeds
the burial time.
Therefore, TiC incorporation rate is proportional to the residence time and the
total number of particles on the surface, whereas it is inversely proportional
to the burial time. In the model, residence and burial times of a particle are
defined as a function of the current density, hydrodynamics, particle size and
dispersant concentration. And so, TiC incorporation rate and TiC vol% in the deposit
are predicted as a function of TiC and dispersant electrolyte concentrations,
current density, and electrode rotation speed. The model proposes that the
addition of the dispersant increases the TiC amount in the deposit through
increasing the residence time of a particle.

References

  • 1. Acet, N. ve Eroglu, D. (2018) Electrodeposition of Ni/TiC Nanocomposites in the Presence of a Cationic Dispersant, Journal of the Electrochemical Society, 165(2), D31-D36. doi: 10.1149/2.0451802jes
  • 2. Asadi, A., Zandrahimi, M., Ebrahimi-Kahrizsangi, R., Saidi, A. ve Seyedalangi, S.M. (2010) New procedure for electrochemical production of Ni–TiC composite powder, Powder Metallurgy, 53(1), 47–50. doi: 10.1179/003258909X12502872942570
  • 3. Benea, L. ve Celis, J.P. (2016) Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers, Materials, 9(4), 269-286. doi:10.3390/ma9040269
  • 4. Benea, L., Ege Caron ve N., Raquet, O. (2016) Tribological behavior of a Ni matrix hybrid nanocomposite reinforced by titanium carbide nanoparticles during electro-codeposition, RCS Advances, 6, 59775–59776. doi: 10.1039/C6RA03605H
  • 5. Bercot, P., Pena-Munoz, E. ve Pagetti J. (2002) Electrolytic composite Ni-PTFE coatings: an adaptation of Guglielmi’s model for the phenomena of incorporation, Surface and Coatings Technology, 157, 282-289. doi: 10.1016/S0257-8972(02)00180-9
  • 6. Celis, J.P. ve Roos, J.R. (1977) Kinetics of the deposition of alumina particles from copper sulfate plating baths, Journal of the Electrochemical Society, 124(10), 1508-1511. doi: 10.1149/1.2133102
  • 7. Celis, J.P., Roos, J.R. ve Buelens, C. (1987) A mathematical model for the electrolytic codeposition of particles with a metallic matrix, Journal of the Electrochemical Society, 134 (6), 1402-1408. doi: 10.1149/1.2100680
  • 8. Dănăilă, E., Benea, L., Caron, N. ve Raquet, O. (2016) Titanium Carbide Nanoparticles Reinforcing Nickel Matrix for Improving Nanohardness and Fretting Wear Properties in Wet Conditions, Metals and Materials International, 22 (5), 924–934. doi: 10.1007/s12540-016-6090-x
  • 9. Eroglu, D., Vilinska, A., Somasundaran, P. ve West, A.C. (2013a) Effect of a cationic polymer, polyethyleneimine, on Ni/SiC co-deposition, Journal of the Electrochemical Society, 160 (2), D35-D40. doi: 10.1149/2.041302jes
  • 10. Eroglu, D., Vilinska, A., Somasundaran, P. ve West, A.C. (2013b) Use of dispersants to enhance incorporation rate of nano-particles into electrodeposited films, Electrochimica Acta, 113, 628-634. doi: 10.1016/j.electacta.2013.09.113
  • 11. Eroglu, D. ve West, A.C. (2013) Mathematical modeling of Ni/SiC co-deposition in the presence of a cationic dispersant, Journal of the Electrochemical Society, 160(9), D354-D360. doi: 10.1149/2.052309jes
  • 12. Fransaer, J., Celis, J.P. ve Roos, J.R. (1992) Analysis of the electrolytic codeposition of non-Brownian particles with metals, Journal of the Electrochemical Society, 139(2), 413-425. doi: 10.1149/1.2069233
  • 13. Guglielmi, N. (1972) Kinetics of the deposition of inert particles from electrolytic baths, Journal of the Electrochemical Society, 119 (8), 1009-1012. doi: 10.1149/1.2404383
  • 14. Hwang, B.J. ve Hwang, C.S. (1993) Mechanism of codeposition of silicon carbide with electrolytic cobalt, Journal of the Electrochemical Society, 140(4), 979-984. doi: 10.1149/1.2056239
  • 15. Karbasi, M., Yazdian, N. ve Vahidian, A. (2012) Development of electro-co-deposited Ni–TiC nano-particle reinforced nanocomposite coatings, Surface and Coatings Technology, 207, 587–593. doi: 10.1016/j.surfcoat.2012.07.083
  • 16. Kartal, M., Buyukbayram, I., Alp, A. ve Akbulut, H. (2017) Production of pulse electrodeposited Ni-TiC nanocomposite coatings, Materials Today: Proceedings, 4, 6982–6989. doi: 10.1016/j.matpr.2017.07.028
  • 17. Maurin, G. ve Lavanant, A. (1995) Electrodeposition of nickel/silicon carbide composite coatings on a rotating disc electrode, Journal of Applied Electrochemistry, 25, 1113-1121. doi: 10.1007/BF00242538
  • 18. Raja, M., Ramesh Bapu, G.N.K., Maharaja, J. ve Sekar, R. (2014) Electrodeposition and characterisation of Ni-TiC nanocomposite using Watts bath, Surface Engineering, 30(10), 697-701. doi: 10.1179/1743294414Y.0000000265
  • 19. Shao, I., Vereecken, P.M., Cammarata, R.C. ve Searson, P.C. (2002) Kinetics of particle codeposition of nanocomposites, Journal of the Electrochemical Society, 149(11), C610-C614. doi: 10.1149/1.1514672
  • 20. Singh, D.K. ve Singh, V.B. (2012) Electrodeposition and characterization of Ni-TiC composite using N-methylformamide bath, Materials Science and Engineering A, 532, 493–499. doi: 10.1016/j.msea.2011.10.115
  • 21. Singh, D.K., Tripathi, M.K. ve Singh, V.B. (2012) Preparation of Ni-TiC Nanocomposites by Electrolytic Codeposition from a Non Aqueous Bath and Their Characterization, Journal of the Electrochemical Society, 159(8), 469–472. doi: 10.1149/2.038208jes
  • 22. Vereecken, P.M., Shao, I. ve Searson, P.C. (2000) Particle codeposition in nanocomposite films, Journal of the Electrochemical Society, 147(7), 2572-2575. doi: 10.1149/1.1393570
  • 23. Vilinska, A., Ponnurangam, S., Chernyshova, I. ve Somasundaran, P., Eroglu, D., Martinez, J. ve West, A.C. (2014) Stabilization of Silicon Carbide (SiC) micro- and nanoparticle dispersions in the presence of concentrated electrolyte, Journal of Colloid Interface Science, 423, 48–53. doi: 10.1016/j.jcis.2014.02.007
  • 24. Yang, Z., Lu, H., Liu, Z., Yan, X. ve Li, D. (2016) Effect of particle size on the surface activity of TiC–Ni composite coating via the interfacial valence electron localization, RSC Advances, 6, 18793–18799. doi: 10.1039/C5RA24371H

Ni/TiC NANOKOMPOZİTLERİN BİR KATYONİK DİSPERSANT EŞLİĞİNDE ELEKTRODEPOZİSYON MODELİ

Year 2019, Volume: 24 Issue: 1, 367 - 382, 30.04.2019
https://doi.org/10.17482/uumfd.436566

Abstract

Ni/TiC nanokompozitlerin elektrodepozisyonu dönen disk
elektrot sisteminde, bir katyonik dispersant eşliğinde modellenmiştir. Önerilen
mekanizmada, bir TiC nanoparçacık difüzyon tabakası boyunca taşınır, elektrot
yüzeyine adsorplanır ve yüzeydeki rezidans süresi büyüyen nikel depozite
gömülme süresini geçtiğinde filme inkorpore olur. Dolayısıyla TiC inkorporasyon
hızı, parçacığın yüzeydeki rezidans süresi ve yüzeydeki parçacık miktarıyla
doğru, parçacığın gömülme süresiyle ise ters orantılı olarak tanımlanmıştır.
Modelde rezidans ve gömülme süreleri ise akım yoğunluğu, hidrodinamik koşullar,
parçacık boyutu ve dispersant konsantrasyonuna bağlı olarak ifade edilmiştir.
Buna istinaden, TiC inkorporasyon hızı ve depozitteki TiC hacim%, dispersant ve
TiC elektrolit konsantrasyonları, akım yoğunluğu ve elektrot dönme hızına bağlı
olarak öngörülmüştür. Elektrolite eklenen katyonik dispersantın depozitteki TiC
miktarını arttırması ise dispersantın TiC nanoparçacıkların yüzeydeki rezidans
sürelerini arttırması ile açıklanmıştır. 

References

  • 1. Acet, N. ve Eroglu, D. (2018) Electrodeposition of Ni/TiC Nanocomposites in the Presence of a Cationic Dispersant, Journal of the Electrochemical Society, 165(2), D31-D36. doi: 10.1149/2.0451802jes
  • 2. Asadi, A., Zandrahimi, M., Ebrahimi-Kahrizsangi, R., Saidi, A. ve Seyedalangi, S.M. (2010) New procedure for electrochemical production of Ni–TiC composite powder, Powder Metallurgy, 53(1), 47–50. doi: 10.1179/003258909X12502872942570
  • 3. Benea, L. ve Celis, J.P. (2016) Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers, Materials, 9(4), 269-286. doi:10.3390/ma9040269
  • 4. Benea, L., Ege Caron ve N., Raquet, O. (2016) Tribological behavior of a Ni matrix hybrid nanocomposite reinforced by titanium carbide nanoparticles during electro-codeposition, RCS Advances, 6, 59775–59776. doi: 10.1039/C6RA03605H
  • 5. Bercot, P., Pena-Munoz, E. ve Pagetti J. (2002) Electrolytic composite Ni-PTFE coatings: an adaptation of Guglielmi’s model for the phenomena of incorporation, Surface and Coatings Technology, 157, 282-289. doi: 10.1016/S0257-8972(02)00180-9
  • 6. Celis, J.P. ve Roos, J.R. (1977) Kinetics of the deposition of alumina particles from copper sulfate plating baths, Journal of the Electrochemical Society, 124(10), 1508-1511. doi: 10.1149/1.2133102
  • 7. Celis, J.P., Roos, J.R. ve Buelens, C. (1987) A mathematical model for the electrolytic codeposition of particles with a metallic matrix, Journal of the Electrochemical Society, 134 (6), 1402-1408. doi: 10.1149/1.2100680
  • 8. Dănăilă, E., Benea, L., Caron, N. ve Raquet, O. (2016) Titanium Carbide Nanoparticles Reinforcing Nickel Matrix for Improving Nanohardness and Fretting Wear Properties in Wet Conditions, Metals and Materials International, 22 (5), 924–934. doi: 10.1007/s12540-016-6090-x
  • 9. Eroglu, D., Vilinska, A., Somasundaran, P. ve West, A.C. (2013a) Effect of a cationic polymer, polyethyleneimine, on Ni/SiC co-deposition, Journal of the Electrochemical Society, 160 (2), D35-D40. doi: 10.1149/2.041302jes
  • 10. Eroglu, D., Vilinska, A., Somasundaran, P. ve West, A.C. (2013b) Use of dispersants to enhance incorporation rate of nano-particles into electrodeposited films, Electrochimica Acta, 113, 628-634. doi: 10.1016/j.electacta.2013.09.113
  • 11. Eroglu, D. ve West, A.C. (2013) Mathematical modeling of Ni/SiC co-deposition in the presence of a cationic dispersant, Journal of the Electrochemical Society, 160(9), D354-D360. doi: 10.1149/2.052309jes
  • 12. Fransaer, J., Celis, J.P. ve Roos, J.R. (1992) Analysis of the electrolytic codeposition of non-Brownian particles with metals, Journal of the Electrochemical Society, 139(2), 413-425. doi: 10.1149/1.2069233
  • 13. Guglielmi, N. (1972) Kinetics of the deposition of inert particles from electrolytic baths, Journal of the Electrochemical Society, 119 (8), 1009-1012. doi: 10.1149/1.2404383
  • 14. Hwang, B.J. ve Hwang, C.S. (1993) Mechanism of codeposition of silicon carbide with electrolytic cobalt, Journal of the Electrochemical Society, 140(4), 979-984. doi: 10.1149/1.2056239
  • 15. Karbasi, M., Yazdian, N. ve Vahidian, A. (2012) Development of electro-co-deposited Ni–TiC nano-particle reinforced nanocomposite coatings, Surface and Coatings Technology, 207, 587–593. doi: 10.1016/j.surfcoat.2012.07.083
  • 16. Kartal, M., Buyukbayram, I., Alp, A. ve Akbulut, H. (2017) Production of pulse electrodeposited Ni-TiC nanocomposite coatings, Materials Today: Proceedings, 4, 6982–6989. doi: 10.1016/j.matpr.2017.07.028
  • 17. Maurin, G. ve Lavanant, A. (1995) Electrodeposition of nickel/silicon carbide composite coatings on a rotating disc electrode, Journal of Applied Electrochemistry, 25, 1113-1121. doi: 10.1007/BF00242538
  • 18. Raja, M., Ramesh Bapu, G.N.K., Maharaja, J. ve Sekar, R. (2014) Electrodeposition and characterisation of Ni-TiC nanocomposite using Watts bath, Surface Engineering, 30(10), 697-701. doi: 10.1179/1743294414Y.0000000265
  • 19. Shao, I., Vereecken, P.M., Cammarata, R.C. ve Searson, P.C. (2002) Kinetics of particle codeposition of nanocomposites, Journal of the Electrochemical Society, 149(11), C610-C614. doi: 10.1149/1.1514672
  • 20. Singh, D.K. ve Singh, V.B. (2012) Electrodeposition and characterization of Ni-TiC composite using N-methylformamide bath, Materials Science and Engineering A, 532, 493–499. doi: 10.1016/j.msea.2011.10.115
  • 21. Singh, D.K., Tripathi, M.K. ve Singh, V.B. (2012) Preparation of Ni-TiC Nanocomposites by Electrolytic Codeposition from a Non Aqueous Bath and Their Characterization, Journal of the Electrochemical Society, 159(8), 469–472. doi: 10.1149/2.038208jes
  • 22. Vereecken, P.M., Shao, I. ve Searson, P.C. (2000) Particle codeposition in nanocomposite films, Journal of the Electrochemical Society, 147(7), 2572-2575. doi: 10.1149/1.1393570
  • 23. Vilinska, A., Ponnurangam, S., Chernyshova, I. ve Somasundaran, P., Eroglu, D., Martinez, J. ve West, A.C. (2014) Stabilization of Silicon Carbide (SiC) micro- and nanoparticle dispersions in the presence of concentrated electrolyte, Journal of Colloid Interface Science, 423, 48–53. doi: 10.1016/j.jcis.2014.02.007
  • 24. Yang, Z., Lu, H., Liu, Z., Yan, X. ve Li, D. (2016) Effect of particle size on the surface activity of TiC–Ni composite coating via the interfacial valence electron localization, RSC Advances, 6, 18793–18799. doi: 10.1039/C5RA24371H
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Damla Eroğlu Pala

Publication Date April 30, 2019
Submission Date June 25, 2018
Acceptance Date April 3, 2019
Published in Issue Year 2019 Volume: 24 Issue: 1

Cite

APA Eroğlu Pala, D. (2019). Ni/TiC NANOKOMPOZİTLERİN BİR KATYONİK DİSPERSANT EŞLİĞİNDE ELEKTRODEPOZİSYON MODELİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(1), 367-382. https://doi.org/10.17482/uumfd.436566
AMA Eroğlu Pala D. Ni/TiC NANOKOMPOZİTLERİN BİR KATYONİK DİSPERSANT EŞLİĞİNDE ELEKTRODEPOZİSYON MODELİ. UUJFE. April 2019;24(1):367-382. doi:10.17482/uumfd.436566
Chicago Eroğlu Pala, Damla. “Ni/TiC NANOKOMPOZİTLERİN BİR KATYONİK DİSPERSANT EŞLİĞİNDE ELEKTRODEPOZİSYON MODELİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, no. 1 (April 2019): 367-82. https://doi.org/10.17482/uumfd.436566.
EndNote Eroğlu Pala D (April 1, 2019) Ni/TiC NANOKOMPOZİTLERİN BİR KATYONİK DİSPERSANT EŞLİĞİNDE ELEKTRODEPOZİSYON MODELİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 1 367–382.
IEEE D. Eroğlu Pala, “Ni/TiC NANOKOMPOZİTLERİN BİR KATYONİK DİSPERSANT EŞLİĞİNDE ELEKTRODEPOZİSYON MODELİ”, UUJFE, vol. 24, no. 1, pp. 367–382, 2019, doi: 10.17482/uumfd.436566.
ISNAD Eroğlu Pala, Damla. “Ni/TiC NANOKOMPOZİTLERİN BİR KATYONİK DİSPERSANT EŞLİĞİNDE ELEKTRODEPOZİSYON MODELİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/1 (April 2019), 367-382. https://doi.org/10.17482/uumfd.436566.
JAMA Eroğlu Pala D. Ni/TiC NANOKOMPOZİTLERİN BİR KATYONİK DİSPERSANT EŞLİĞİNDE ELEKTRODEPOZİSYON MODELİ. UUJFE. 2019;24:367–382.
MLA Eroğlu Pala, Damla. “Ni/TiC NANOKOMPOZİTLERİN BİR KATYONİK DİSPERSANT EŞLİĞİNDE ELEKTRODEPOZİSYON MODELİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 24, no. 1, 2019, pp. 367-82, doi:10.17482/uumfd.436566.
Vancouver Eroğlu Pala D. Ni/TiC NANOKOMPOZİTLERİN BİR KATYONİK DİSPERSANT EŞLİĞİNDE ELEKTRODEPOZİSYON MODELİ. UUJFE. 2019;24(1):367-82.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.