Research Article
BibTex RIS Cite

1940 NM FİBER LAZER KAYNAĞININ KARACİĞER DOKUSUNDAKİ ISIL HASARININ YAPAY SİNİR AĞLARI İLE TAHMİNİ

Year 2019, Volume: 24 Issue: 2, 583 - 594, 30.08.2019
https://doi.org/10.17482/uumfd.410963

Abstract

Bu
çalışmada Yapay Sinir Ağları (YSA) yöntemi kullanılarak 1940 nm dalgaboyuna
sahip lazer kaynağının karaciğer dokusu üzerinde oluşturduğu ısıl hasarların güç
ve uygulama süreleri ile arasındaki ilişkisi incelenmiştir. Farklı güç
değerlerine sahip lazer kaynağı koagülasyon ve karbonizasyon gözlenene kadar dokuya
farklı sürelerde uygulanmıştır. Buna bağlı olarak radyal ve düşey yönde oluşan
ısıl hasarlar deneysel olarak ölçülmüş ve kayıt altına alınmıştır. Bu
kayıtların %70’i Matlab ortamında geliştirilen YSA modellerini eğitmek için
kullanılmıştır. Lazer gücü ve uygulama süreleri model için giriş verileri,
koagülasyon/karbonizasyon oluşma durumu ve oluşan ısıl hasarlar ise (çap,
derinlik) modelin çıkış değerleri olarak kabul edilmiştir. Giriş verileri
kullanılarak beş farklı öğrenme (LM, GDA, GDX, CGP ve BFG) algoritmasının en
küçük kareler değeri (MSE) hesaplanmıştır ve karşılaştırılmıştır. Gizli
katmanında 14 tane nörona sahip GDX, 2-14-3 yapısı, en iyi MSE (7.58E-2)
sonucunu vermiştir ve eğitimde kullanılmayan veriler ile bu algoritmanın tahmin
etme performansını test etmek için kullanılmıştır. Geliştirilen modelin ne
kadar iyi çalıştığını anlamak için YSA tarafından tahmin edilen sonuçlar,
deneysel sonuçlar ile karşılaştırılmıştır. Minimum %2.7 ve  % 3.6 hata oranı ile dokuda oluşan ısıl çap
ve derinliklerinin tahmin edilebileceği gösterilmiştir. Bu sonuçlara göre,
medikal uygulamalarda YSA yönteminin lazere yardımcı bir araç olarak kullanılması,
çevre dokuların korunarak istenilen hedef bölgenin daha kontrollü ve daha
yüksek doğrulukla tedavisini mümkün kılabilir.

References

  • Amato, F., López, A., Peña-Méndez, E. M., Vaňhara, P., Hampl, A., Havel, J. (2013) Artificial neural networks in medical diagnosis. Journal of Applied Biomedicine, 11(2):, 47–58. https://doi.org/10.2478/v10136-012-0031-x
  • Carleo, G. and Troyer, M. (2016) Solving the Quantum Many-Body Problem with Artificial Neural Networks. arXiv e-prints, 127383. https://doi.org/10.1126/science.aag2302
  • Cömert, Z. and Kocamaz, A. (2017) A Study of Artificial Neural Network Training Algorithms for Classification of Cardiotocography Signals. Bitlis Eren University Journal of Science and Technology, 7(2):93–103. https://doi.org/10.17678/beuscitech.338085
  • Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., Blasco, J. (2011) Advances in Machine Vision Applications for Automatic Inspection and Quality Evaluation of Fruits and Vegetables. Food and Bioprocess Technology, 4(4):, 487–504. https://doi.org/10.1007/s11947-010-0411-8
  • Dick, E. A., Taylor-Robinson, S. D., Thomas, H. C., Gedroyc, W. M. W. (2002) Ablative therapy for liver tumours. Gut, 50(5):, 733–739. https://doi.org/10.1136/gut.50.5.733
  • Er, O., Yumusak, N., Temurtas, F. (2010). Chest diseases diagnosis using artificial neural networks. Expert Systems with Applications, 37(12):, 7648–7655. https://doi.org/10.1016/j.eswa.2010.04.078
  • Fast, M. and Palmé, T. (2010) Application of artificial neural networks to the condition monitoring and diagnosis of a combined heat and power plant. Energy, 35(2):, 1114–1120. https://doi.org/10.1016/j.energy.2009.06.005
  • Faust, O., Acharya U., R., Ng, E. Y. K., Ng, K.-H., Suri, J. S. (2012) Algorithms for the Automated Detection of Diabetic Retinopathy Using Digital Fundus Images: A Review. Journal of Medical Systems, 36(1):, 145–157. https://doi.org/10.1007/s10916-010-9454-7
  • Huang, Y., Kangas, L. J., Rasco, B. A. (2007)Applications of Artificial Neural Networks (ANNs) in food science. Critical Reviews in Food Science and Nutrition, 47(2):, 113–126. https://doi.org/10.1080/10408390600626453
  • Hung, O. N., Chan, C. K., Kan, C. W., Yuen, C. W. M., Song, L. J. (2014) Artificial neural network approach for predicting colour properties of laser-treated denim fabrics. Fibers and Polymers, 15(6):, 1330–1336. https://doi.org/10.1007/s12221-014-1330-5
  • Hung, O. N., Song, L. J., Chan, C. K., Kan, C. W., Yuen, C. W. M. (2011) Using artificial neural network to predict colour properties of laser-treated 100% cotton fabric. Fibers and Polymers, 12(8):, 1069–1076. https://doi.org/10.1007/s12221-011-1069-1
  • Jean, M. Der, Liu, C. Du, Wang, J. T. (2005) Design and development of artificial neural networks for depositing powders in coating treatment. Applied Surface Science, 245(1–4):290–303. https://doi.org/10.1016/j.apsusc.2004.10.041
  • Jiang, J., Trundle, P., Ren, J. (2010) Medical image analysis with artificial neural networks. Computerized Medical Imaging and Graphics, 34(8):, 617–631. https://doi.org/10.1016/j.compmedimag.2010.07.003
  • Kumar, K., Parida, M., Katiyar, V. K. (2013) Short Term Traffic Flow Prediction for a Non Urban Highway Using Artificial Neural Network. Procedia - Social and Behavioral Sciences, 104:, 755–764. https://doi.org/10.1016/j.sbspro.2013.11.170
  • Niemz, M. . H. (2007) Lasers-Tissue Interactions: Fundamentals and Applications, Springer. https://doi.org/10.1007/978-3-662-04717-0
  • Özdemir, A. T., Danisman, K. (2015) A comparative study of two different FPGA-based arrhythmia classifier architectures. Turkish Journal of Electrical Engineering and Computer Sciences, 23:, 2089–2106. https://doi.org/10.3906/elk-1305-41
  • Özdemir, A. T., Danişman, K. (2011) Fully parallel ann-based arrhythmia classifier on a single-chip fpga: Fpaac. Turkish Journal of Electrical Engineering and Computer Sciences, 19(4): 667–687. https://doi.org/10.3906/elk-1006-488
  • Rangraz, P., Behnam, H., Shakhssalim, N., Tavakkoli, J. (2012) A Feed-forward Neural Network Algorithm to Detect Thermal Lesions Induced by High Intensity Focused Ultrasound in Tissue. Journal of medical signals and sensors, 2(4):192–202.
  • Rao, S., Shrivastava, V., Dev, S., Seetharamu, K. N. (2012) Prediction of the Damage Coefficient in a Prostate Cancer Tissue during Laser Ablation Using Artificial Neural Networks, Proceedings of the World Congress on Engineering, 3:, 2–7.
  • Seera, M., Lim, C. P. (2014) A hybrid intelligent system for medical data classification. Expert Systems with Applications, 41(5): 2239–2249. https://doi.org/10.1016/j.eswa.2013.09.022
  • Shukur, O. B., Lee, M. H. (2015) Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA. Renewable Energy, 76:, 637–647. https://doi.org/10.1016/j.renene.2014.11.084
  • Søreide, K., Thorsen, K., J. A. Søreide (2014) Predicting outcomes in patients with perforated gastroduodenal ulcers: artificial neural network modelling indicates a highly complex disease. European Journal of Trauma and Emergency Surgery, 41(1):, 91–98. https://doi.org/10.1007/s00068-014-0417-4
  • Su, B., Tang, J., Liao, H. (2015). Automatic laser ablation control algorithm for an novel endoscopic laser ablation end effector for precision neurosurgery. IEEE International Conference on Intelligent Robots and Systems, 4362–4367. https://doi.org/10.1109/IROS.2015.7353996
  • Theisen-Kunde, D., Danicke, V., Brinkmann, R. (2009) Comparison of two cw infrared laser systems emitting wavelengths at 1.92 µm and 2.01 µm for tissue dissection in liver surgery. IFMBE Proceedings, 25(6):, 132–135. https://doi.org/10.1007/978-3-642-03906-5-36
  • Tkáč, M. and Verner, R. (2015) Artificial neural networks in business: Two decades of research. Applied Soft Computing, 38:788–804. https://doi.org/10.1016/j.asoc.2015.09.040
  • Vogl, T J, Mack, M. G., Straub, R., Eichler, K., Engelmann, K., Zangos, S., Woitazek, D. (2001) MR guided laser-induced thermotherapy (LITT) of malignant liver and soft tissue tumours. Medical Laser Application, 16(2):91–102. https://doi.org/http://dx.doi.org/10.1078/1615-1615-00015
  • Vogl, Thomas J, Mack, M., Eichler, K., Lehnert, T., Nabil, M. (2006) Effect of laser-induced thermotherapy on liver metastases. Expert review of anticancer therapy, 6(5):, 769–774. https://doi.org/10.1586/14737140.6.5.769
  • Wang, C., Li, L., Wang, L., Ping, Z., Flory, M. T., Wang, G., Xi, Y., Li, W. (2013) Evaluating the risk of type 2 diabetes mellitus using artificial neural network: An effective classification approach. Diabetes Research and Clinical Practice, 100(1):, 111–118. https://doi.org/10.1016/j.diabres.2013.01.023
  • Wang, Y. C., Chan, T. C.-H., Sahakian, A. V. 2018. Real-time estimation of lesion depth and control of radiofrequency ablation within ex vivo animal tissues using a neural network. International journal of hyperthermia ,International Journal of Hyperthermia, 34(7):1104-1113. doi: 10.1080/02656736.2017.
  • Yildiz, F (2012) NIR-IR Lazerlerin Karaciğer Üzerindeki Etkilerinin In Vitro Ortamda Araştırılması ve Karşılaştırılması, Yüksek Lisans Tezi,İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü,İstanbul
  • Yildiz, F., Gulsoy, M., Cilesiz, I. (2016) An experimental study on photothermal damage to tissue: The role of irradiance and wavelength. Laser Physics, 26(9):, 95601. https://doi.org/10.1088/1054-660x/26/9/095601
  • Yildiz, F. and Özdemir, A. T. (2019) Prediction of laser-induced thermal damage with artificial neural networks. Laser Physics, 29(7): 075205. https://doi.org/10.1088/1555-6611/ab183b
  • Zhang, Y., Wu, L., Wang, S. (2011) Magnetic Resonance Brain Image Classification By an Improved Artificial Bee Colony Algorithm. Progress In Electromagnetics Research, 116: 65–79. https://doi.org/10.2528/PIER11031709

Prediction of 1940 nm Fiber Laser Induced Thermal Damage Using Artificial Neural Networks

Year 2019, Volume: 24 Issue: 2, 583 - 594, 30.08.2019
https://doi.org/10.17482/uumfd.410963

Abstract

These study
presents relation between power and application time of 1940 nm laser source and
thermal damage occurred on liver tissue using artificial neural networks (ANNs)
method. Laser source with different powers and application times implemented on
liver tissue until onset of coagulation and carbonization. Thermal damages
occurred in horizontal and vertical direction have been experimentally measured
and recorded. 70 % of this data was used to training ANN model, which was built
in Matlab environment. Power and application time were defined as input
parameters of model. Coagulation /carbonization occurrence,
diameter and depth of thermal damages were used
as output of model. This data was used to calculate and compare MSE value of
five different learning algorithm (
LM, GDA, GDX, CGP ve BFG). GDX algorithm with a 14 neuron in hidden layer,
2-14-3, was resulted in minimum MSE value (
7.58E-2) and remaining untrained data was used to show prediction performance
of GDX algorithm. ANN model outputs were compared with experimental results. It
was shown that diameter and depth of coagulation and carbonization can be
predicted using using ANN method with a minimum
2.7% and 3.6% success rate,
respectively.
According to these results, ANN assisted laser
thermal therapies can provide more accurate treatment of undesired target tissue
(tumor) with a minimal damage of surrounding healthy tissues. 

References

  • Amato, F., López, A., Peña-Méndez, E. M., Vaňhara, P., Hampl, A., Havel, J. (2013) Artificial neural networks in medical diagnosis. Journal of Applied Biomedicine, 11(2):, 47–58. https://doi.org/10.2478/v10136-012-0031-x
  • Carleo, G. and Troyer, M. (2016) Solving the Quantum Many-Body Problem with Artificial Neural Networks. arXiv e-prints, 127383. https://doi.org/10.1126/science.aag2302
  • Cömert, Z. and Kocamaz, A. (2017) A Study of Artificial Neural Network Training Algorithms for Classification of Cardiotocography Signals. Bitlis Eren University Journal of Science and Technology, 7(2):93–103. https://doi.org/10.17678/beuscitech.338085
  • Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., Blasco, J. (2011) Advances in Machine Vision Applications for Automatic Inspection and Quality Evaluation of Fruits and Vegetables. Food and Bioprocess Technology, 4(4):, 487–504. https://doi.org/10.1007/s11947-010-0411-8
  • Dick, E. A., Taylor-Robinson, S. D., Thomas, H. C., Gedroyc, W. M. W. (2002) Ablative therapy for liver tumours. Gut, 50(5):, 733–739. https://doi.org/10.1136/gut.50.5.733
  • Er, O., Yumusak, N., Temurtas, F. (2010). Chest diseases diagnosis using artificial neural networks. Expert Systems with Applications, 37(12):, 7648–7655. https://doi.org/10.1016/j.eswa.2010.04.078
  • Fast, M. and Palmé, T. (2010) Application of artificial neural networks to the condition monitoring and diagnosis of a combined heat and power plant. Energy, 35(2):, 1114–1120. https://doi.org/10.1016/j.energy.2009.06.005
  • Faust, O., Acharya U., R., Ng, E. Y. K., Ng, K.-H., Suri, J. S. (2012) Algorithms for the Automated Detection of Diabetic Retinopathy Using Digital Fundus Images: A Review. Journal of Medical Systems, 36(1):, 145–157. https://doi.org/10.1007/s10916-010-9454-7
  • Huang, Y., Kangas, L. J., Rasco, B. A. (2007)Applications of Artificial Neural Networks (ANNs) in food science. Critical Reviews in Food Science and Nutrition, 47(2):, 113–126. https://doi.org/10.1080/10408390600626453
  • Hung, O. N., Chan, C. K., Kan, C. W., Yuen, C. W. M., Song, L. J. (2014) Artificial neural network approach for predicting colour properties of laser-treated denim fabrics. Fibers and Polymers, 15(6):, 1330–1336. https://doi.org/10.1007/s12221-014-1330-5
  • Hung, O. N., Song, L. J., Chan, C. K., Kan, C. W., Yuen, C. W. M. (2011) Using artificial neural network to predict colour properties of laser-treated 100% cotton fabric. Fibers and Polymers, 12(8):, 1069–1076. https://doi.org/10.1007/s12221-011-1069-1
  • Jean, M. Der, Liu, C. Du, Wang, J. T. (2005) Design and development of artificial neural networks for depositing powders in coating treatment. Applied Surface Science, 245(1–4):290–303. https://doi.org/10.1016/j.apsusc.2004.10.041
  • Jiang, J., Trundle, P., Ren, J. (2010) Medical image analysis with artificial neural networks. Computerized Medical Imaging and Graphics, 34(8):, 617–631. https://doi.org/10.1016/j.compmedimag.2010.07.003
  • Kumar, K., Parida, M., Katiyar, V. K. (2013) Short Term Traffic Flow Prediction for a Non Urban Highway Using Artificial Neural Network. Procedia - Social and Behavioral Sciences, 104:, 755–764. https://doi.org/10.1016/j.sbspro.2013.11.170
  • Niemz, M. . H. (2007) Lasers-Tissue Interactions: Fundamentals and Applications, Springer. https://doi.org/10.1007/978-3-662-04717-0
  • Özdemir, A. T., Danisman, K. (2015) A comparative study of two different FPGA-based arrhythmia classifier architectures. Turkish Journal of Electrical Engineering and Computer Sciences, 23:, 2089–2106. https://doi.org/10.3906/elk-1305-41
  • Özdemir, A. T., Danişman, K. (2011) Fully parallel ann-based arrhythmia classifier on a single-chip fpga: Fpaac. Turkish Journal of Electrical Engineering and Computer Sciences, 19(4): 667–687. https://doi.org/10.3906/elk-1006-488
  • Rangraz, P., Behnam, H., Shakhssalim, N., Tavakkoli, J. (2012) A Feed-forward Neural Network Algorithm to Detect Thermal Lesions Induced by High Intensity Focused Ultrasound in Tissue. Journal of medical signals and sensors, 2(4):192–202.
  • Rao, S., Shrivastava, V., Dev, S., Seetharamu, K. N. (2012) Prediction of the Damage Coefficient in a Prostate Cancer Tissue during Laser Ablation Using Artificial Neural Networks, Proceedings of the World Congress on Engineering, 3:, 2–7.
  • Seera, M., Lim, C. P. (2014) A hybrid intelligent system for medical data classification. Expert Systems with Applications, 41(5): 2239–2249. https://doi.org/10.1016/j.eswa.2013.09.022
  • Shukur, O. B., Lee, M. H. (2015) Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA. Renewable Energy, 76:, 637–647. https://doi.org/10.1016/j.renene.2014.11.084
  • Søreide, K., Thorsen, K., J. A. Søreide (2014) Predicting outcomes in patients with perforated gastroduodenal ulcers: artificial neural network modelling indicates a highly complex disease. European Journal of Trauma and Emergency Surgery, 41(1):, 91–98. https://doi.org/10.1007/s00068-014-0417-4
  • Su, B., Tang, J., Liao, H. (2015). Automatic laser ablation control algorithm for an novel endoscopic laser ablation end effector for precision neurosurgery. IEEE International Conference on Intelligent Robots and Systems, 4362–4367. https://doi.org/10.1109/IROS.2015.7353996
  • Theisen-Kunde, D., Danicke, V., Brinkmann, R. (2009) Comparison of two cw infrared laser systems emitting wavelengths at 1.92 µm and 2.01 µm for tissue dissection in liver surgery. IFMBE Proceedings, 25(6):, 132–135. https://doi.org/10.1007/978-3-642-03906-5-36
  • Tkáč, M. and Verner, R. (2015) Artificial neural networks in business: Two decades of research. Applied Soft Computing, 38:788–804. https://doi.org/10.1016/j.asoc.2015.09.040
  • Vogl, T J, Mack, M. G., Straub, R., Eichler, K., Engelmann, K., Zangos, S., Woitazek, D. (2001) MR guided laser-induced thermotherapy (LITT) of malignant liver and soft tissue tumours. Medical Laser Application, 16(2):91–102. https://doi.org/http://dx.doi.org/10.1078/1615-1615-00015
  • Vogl, Thomas J, Mack, M., Eichler, K., Lehnert, T., Nabil, M. (2006) Effect of laser-induced thermotherapy on liver metastases. Expert review of anticancer therapy, 6(5):, 769–774. https://doi.org/10.1586/14737140.6.5.769
  • Wang, C., Li, L., Wang, L., Ping, Z., Flory, M. T., Wang, G., Xi, Y., Li, W. (2013) Evaluating the risk of type 2 diabetes mellitus using artificial neural network: An effective classification approach. Diabetes Research and Clinical Practice, 100(1):, 111–118. https://doi.org/10.1016/j.diabres.2013.01.023
  • Wang, Y. C., Chan, T. C.-H., Sahakian, A. V. 2018. Real-time estimation of lesion depth and control of radiofrequency ablation within ex vivo animal tissues using a neural network. International journal of hyperthermia ,International Journal of Hyperthermia, 34(7):1104-1113. doi: 10.1080/02656736.2017.
  • Yildiz, F (2012) NIR-IR Lazerlerin Karaciğer Üzerindeki Etkilerinin In Vitro Ortamda Araştırılması ve Karşılaştırılması, Yüksek Lisans Tezi,İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü,İstanbul
  • Yildiz, F., Gulsoy, M., Cilesiz, I. (2016) An experimental study on photothermal damage to tissue: The role of irradiance and wavelength. Laser Physics, 26(9):, 95601. https://doi.org/10.1088/1054-660x/26/9/095601
  • Yildiz, F. and Özdemir, A. T. (2019) Prediction of laser-induced thermal damage with artificial neural networks. Laser Physics, 29(7): 075205. https://doi.org/10.1088/1555-6611/ab183b
  • Zhang, Y., Wu, L., Wang, S. (2011) Magnetic Resonance Brain Image Classification By an Improved Artificial Bee Colony Algorithm. Progress In Electromagnetics Research, 116: 65–79. https://doi.org/10.2528/PIER11031709
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Fikret Yıldız

Publication Date August 30, 2019
Submission Date March 29, 2018
Acceptance Date August 5, 2019
Published in Issue Year 2019 Volume: 24 Issue: 2

Cite

APA Yıldız, F. (2019). 1940 NM FİBER LAZER KAYNAĞININ KARACİĞER DOKUSUNDAKİ ISIL HASARININ YAPAY SİNİR AĞLARI İLE TAHMİNİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 583-594. https://doi.org/10.17482/uumfd.410963
AMA Yıldız F. 1940 NM FİBER LAZER KAYNAĞININ KARACİĞER DOKUSUNDAKİ ISIL HASARININ YAPAY SİNİR AĞLARI İLE TAHMİNİ. UUJFE. August 2019;24(2):583-594. doi:10.17482/uumfd.410963
Chicago Yıldız, Fikret. “1940 NM FİBER LAZER KAYNAĞININ KARACİĞER DOKUSUNDAKİ ISIL HASARININ YAPAY SİNİR AĞLARI İLE TAHMİNİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, no. 2 (August 2019): 583-94. https://doi.org/10.17482/uumfd.410963.
EndNote Yıldız F (August 1, 2019) 1940 NM FİBER LAZER KAYNAĞININ KARACİĞER DOKUSUNDAKİ ISIL HASARININ YAPAY SİNİR AĞLARI İLE TAHMİNİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 2 583–594.
IEEE F. Yıldız, “1940 NM FİBER LAZER KAYNAĞININ KARACİĞER DOKUSUNDAKİ ISIL HASARININ YAPAY SİNİR AĞLARI İLE TAHMİNİ”, UUJFE, vol. 24, no. 2, pp. 583–594, 2019, doi: 10.17482/uumfd.410963.
ISNAD Yıldız, Fikret. “1940 NM FİBER LAZER KAYNAĞININ KARACİĞER DOKUSUNDAKİ ISIL HASARININ YAPAY SİNİR AĞLARI İLE TAHMİNİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/2 (August 2019), 583-594. https://doi.org/10.17482/uumfd.410963.
JAMA Yıldız F. 1940 NM FİBER LAZER KAYNAĞININ KARACİĞER DOKUSUNDAKİ ISIL HASARININ YAPAY SİNİR AĞLARI İLE TAHMİNİ. UUJFE. 2019;24:583–594.
MLA Yıldız, Fikret. “1940 NM FİBER LAZER KAYNAĞININ KARACİĞER DOKUSUNDAKİ ISIL HASARININ YAPAY SİNİR AĞLARI İLE TAHMİNİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 24, no. 2, 2019, pp. 583-94, doi:10.17482/uumfd.410963.
Vancouver Yıldız F. 1940 NM FİBER LAZER KAYNAĞININ KARACİĞER DOKUSUNDAKİ ISIL HASARININ YAPAY SİNİR AĞLARI İLE TAHMİNİ. UUJFE. 2019;24(2):583-94.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.