Research Article
BibTex RIS Cite

DESIGN and ANALYSIS of 28 GHz MICROSTRIP PATCH ANTENNA for DIFFERENT TYPE FR4 CLADDINGS

Year 2019, Volume: 24 Issue: 2, 265 - 288, 30.08.2019
https://doi.org/10.17482/uumfd.548410

Abstract

In
this study, rectangular patch microstrip antennas operating at 28 GHz frequency
compatible with 5G mobile technology are designed with Computer Simulation
Technology (CST) program for different patch materials and the performances of
the designed antennas are compared. For each of the same sized antennas
designed with the selected patch materials, it is found that they are suitable
for the 28 GHz band and the best return loss performance is obtained by using
the tantalum conductor while the silver conductor has the best antenna
efficiency

References

  • 1. Aguni, L., Chabaa, S., Ibnyaich, S. and Zeroual, A. (2019). Design of a Microstrip Patch Antenna for ISM band using Artificial Neural Networks, Journal of Engineering Technology, Vol 8, No 1, 97-113.
  • 2. Ahmed, Z., Yang, K., McEvoy, P. and Ammann, M.J., (2017). Study of mm-Wave Microstrip Patch Array on Curved Substrate. Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 1-4.
  • 3. Balanis, C.A. (2016). Antenna Theory: Analysis and Design, John Wiley&Sons Ltd.
  • 4. Bhanumathi, V. and Swathi, S. (2019). Bandwidth Enhanced Microstrip Patch Antenna for UWB Applications, ICTACT Journal on Microelectronics, Vol 4, No 4, 669-675. DOI: 10.21917/ijme.2019.01116.
  • 5. Garg, R., Bhartia, P., Bahl, I. and Ittipiboon, A. (2001). Microstrip Design Antenna Handbook, Artech House, Inc.
  • 6. Islam, Md.M., Hasan, R.R., Rahman, Md. M., Islam, K.S. and Al-Amin, S.M. (2016), Design & Analysis of Microstrip Patch Antenna Using Different Dielectric Materials for WiMAX Communication System. The International Journal of Engineering & Science, 4, 20-21. DOI:10.3991/ijes.v4i1.5569.
  • 7. Khalily, M., Rahman, T.A. and Kamarudin, M.R. (2016). Design of Phased Arrays of Series-Fed Patch Antennas with Reduced Number of the Controllers for 28 GHz mm-Wave Applications, IEEE Antennas and Wireless Propagation Letters, Vol 15, 1305-1308.DOI:10.1109/LAWP.2015.2505781.
  • 8. Kiran, T., Mounisha, N., Ch.Mythily, Akhil, D. and Kumar, T.V.B.P. (2018). Design of Microstrip Patch Antenna for 5g Applications, IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), Vol 13, No 1, 14-17. DOI: 10.9790/2834-1301011417.
  • 9. Mahabub, A., Rahman, M.M., Al-Amin, M., Rahman, M.S. and Rana, M.M. (2018). Design of a Multiband Patch Antenna for 5G Communication Systems, Open Journal of Antennas and Propagation, 1-14. DOI: 10.4236/ojapr.2018.61001.
  • 10. Matin, M. A. and Sayeed, A. I. (2010). A design rule for inset-fed rectangular microstrip patch antenna, Wseas Transactions on Communications, 1(9), 63-72.
  • 11. Mondal, K. and Sarkar, P. P. (2019). Gain and Bandwidth Enhancement of Microstrip Patch Antenna for WiMAX and WLAN Applications, IETE Journal of Research, 1-9. DOI: 10.1080/03772063.2019.1565958.
  • 12. Nakar, P. S., (2004). Design of a Compact Microstrip Patch Antenna for Use in Wireless/Cellular Devices. The Florida State University College of Engineering Master of Thesis, Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-2790.
  • 13. Parchin, N.O., Shen, M. and Pedersen,G.F., (2016). End-Fire Phased Array 5G Antenna Design Using Leaf-Shaped Bow-Tie Elements for 28/38 GHz MIMO Applications, 2016 IEEE International Conference Ubiquitous Wireless Broadband (ICUWB), 1-4. DOI: 10.1109/ICUWB.2016.7790538.
  • 14. Pozar, D.M. (2012). Microwave Engineering, John Wiley & Sons, Inc.
  • 15. Rodriguez, J. (2015). Fundamentals of 5G Mobile Networks, John Wiley&Sons Ltd.DOI:10.1002/9781118867464.
  • 16. Sethi, W.T., Ashraf, M.A., Ragheb, A., Alasaad, A. and Alshebeili, S.A. ( 2018). Demonstration of Millimeter Wave 5G Setup Employing High-Gain Vivaldi Array, Hindawi International Journal of Antennas and Propagation. Vol. 2018, 12 pages. DOI: 10.1155/2018/3927153.
  • 17. Verma, S., Mahajan, L., Kumar, R., Saini, H.S. and Kumar, N. (2016). A Small Microstrip Patch Antenna for Future 5G Applications. 5th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Sep. 7-9, AIIT, Amity University Uttar Pradesh, Noida, India.DOI: 10.1109/ICRITO.2016.7784999.
  • 18. Yoon, N. and Seo, C. (2017). A 28 GHz Wideband 2x2 U-Slot Patch Array Antenna, Journal of Electromagnetic Engineering and Science, 17, 133-137.DOI: 10.5515/JKIEES.2017.17.3.133.

Farklı Tipte FR4 Kaplamaları için 28 GHz Mikroşerit Yama Anteni Tasarımı ve Analizi

Year 2019, Volume: 24 Issue: 2, 265 - 288, 30.08.2019
https://doi.org/10.17482/uumfd.548410

Abstract

Bu
çalışmada, 5G mobil teknolojisine uygun olarak 28 GHz frekansında çalışan
dikdörtgen yama mikroşerit antenler, farklı yama malzemeleri için Computer
Simulation Technology (CST) programı ile tasarlanmış ve tasarlanan antenlerin
performansları karşılaştırılmıştır. Seçilen yama
malzemeleri ile tasarlanan aynı boyuttaki antenlerin her biri için 28 GHz
bandında çalışmalarının uygun oldukları ve en iyi geri dönüş performansının
tantal iletkeninin kullanılması ile elde edilirken gümüş iletkenin en iyi anten
verimine sahip olduğu görülmüştür.

References

  • 1. Aguni, L., Chabaa, S., Ibnyaich, S. and Zeroual, A. (2019). Design of a Microstrip Patch Antenna for ISM band using Artificial Neural Networks, Journal of Engineering Technology, Vol 8, No 1, 97-113.
  • 2. Ahmed, Z., Yang, K., McEvoy, P. and Ammann, M.J., (2017). Study of mm-Wave Microstrip Patch Array on Curved Substrate. Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 1-4.
  • 3. Balanis, C.A. (2016). Antenna Theory: Analysis and Design, John Wiley&Sons Ltd.
  • 4. Bhanumathi, V. and Swathi, S. (2019). Bandwidth Enhanced Microstrip Patch Antenna for UWB Applications, ICTACT Journal on Microelectronics, Vol 4, No 4, 669-675. DOI: 10.21917/ijme.2019.01116.
  • 5. Garg, R., Bhartia, P., Bahl, I. and Ittipiboon, A. (2001). Microstrip Design Antenna Handbook, Artech House, Inc.
  • 6. Islam, Md.M., Hasan, R.R., Rahman, Md. M., Islam, K.S. and Al-Amin, S.M. (2016), Design & Analysis of Microstrip Patch Antenna Using Different Dielectric Materials for WiMAX Communication System. The International Journal of Engineering & Science, 4, 20-21. DOI:10.3991/ijes.v4i1.5569.
  • 7. Khalily, M., Rahman, T.A. and Kamarudin, M.R. (2016). Design of Phased Arrays of Series-Fed Patch Antennas with Reduced Number of the Controllers for 28 GHz mm-Wave Applications, IEEE Antennas and Wireless Propagation Letters, Vol 15, 1305-1308.DOI:10.1109/LAWP.2015.2505781.
  • 8. Kiran, T., Mounisha, N., Ch.Mythily, Akhil, D. and Kumar, T.V.B.P. (2018). Design of Microstrip Patch Antenna for 5g Applications, IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), Vol 13, No 1, 14-17. DOI: 10.9790/2834-1301011417.
  • 9. Mahabub, A., Rahman, M.M., Al-Amin, M., Rahman, M.S. and Rana, M.M. (2018). Design of a Multiband Patch Antenna for 5G Communication Systems, Open Journal of Antennas and Propagation, 1-14. DOI: 10.4236/ojapr.2018.61001.
  • 10. Matin, M. A. and Sayeed, A. I. (2010). A design rule for inset-fed rectangular microstrip patch antenna, Wseas Transactions on Communications, 1(9), 63-72.
  • 11. Mondal, K. and Sarkar, P. P. (2019). Gain and Bandwidth Enhancement of Microstrip Patch Antenna for WiMAX and WLAN Applications, IETE Journal of Research, 1-9. DOI: 10.1080/03772063.2019.1565958.
  • 12. Nakar, P. S., (2004). Design of a Compact Microstrip Patch Antenna for Use in Wireless/Cellular Devices. The Florida State University College of Engineering Master of Thesis, Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-2790.
  • 13. Parchin, N.O., Shen, M. and Pedersen,G.F., (2016). End-Fire Phased Array 5G Antenna Design Using Leaf-Shaped Bow-Tie Elements for 28/38 GHz MIMO Applications, 2016 IEEE International Conference Ubiquitous Wireless Broadband (ICUWB), 1-4. DOI: 10.1109/ICUWB.2016.7790538.
  • 14. Pozar, D.M. (2012). Microwave Engineering, John Wiley & Sons, Inc.
  • 15. Rodriguez, J. (2015). Fundamentals of 5G Mobile Networks, John Wiley&Sons Ltd.DOI:10.1002/9781118867464.
  • 16. Sethi, W.T., Ashraf, M.A., Ragheb, A., Alasaad, A. and Alshebeili, S.A. ( 2018). Demonstration of Millimeter Wave 5G Setup Employing High-Gain Vivaldi Array, Hindawi International Journal of Antennas and Propagation. Vol. 2018, 12 pages. DOI: 10.1155/2018/3927153.
  • 17. Verma, S., Mahajan, L., Kumar, R., Saini, H.S. and Kumar, N. (2016). A Small Microstrip Patch Antenna for Future 5G Applications. 5th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Sep. 7-9, AIIT, Amity University Uttar Pradesh, Noida, India.DOI: 10.1109/ICRITO.2016.7784999.
  • 18. Yoon, N. and Seo, C. (2017). A 28 GHz Wideband 2x2 U-Slot Patch Array Antenna, Journal of Electromagnetic Engineering and Science, 17, 133-137.DOI: 10.5515/JKIEES.2017.17.3.133.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Bahadır Hiçdurmaz 0000-0002-4610-1400

Ömer Faruk Gümüş This is me

Publication Date August 30, 2019
Submission Date April 2, 2019
Acceptance Date May 23, 2019
Published in Issue Year 2019 Volume: 24 Issue: 2

Cite

APA Hiçdurmaz, B., & Gümüş, Ö. F. (2019). DESIGN and ANALYSIS of 28 GHz MICROSTRIP PATCH ANTENNA for DIFFERENT TYPE FR4 CLADDINGS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 265-288. https://doi.org/10.17482/uumfd.548410
AMA Hiçdurmaz B, Gümüş ÖF. DESIGN and ANALYSIS of 28 GHz MICROSTRIP PATCH ANTENNA for DIFFERENT TYPE FR4 CLADDINGS. UUJFE. August 2019;24(2):265-288. doi:10.17482/uumfd.548410
Chicago Hiçdurmaz, Bahadır, and Ömer Faruk Gümüş. “DESIGN and ANALYSIS of 28 GHz MICROSTRIP PATCH ANTENNA for DIFFERENT TYPE FR4 CLADDINGS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, no. 2 (August 2019): 265-88. https://doi.org/10.17482/uumfd.548410.
EndNote Hiçdurmaz B, Gümüş ÖF (August 1, 2019) DESIGN and ANALYSIS of 28 GHz MICROSTRIP PATCH ANTENNA for DIFFERENT TYPE FR4 CLADDINGS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 2 265–288.
IEEE B. Hiçdurmaz and Ö. F. Gümüş, “DESIGN and ANALYSIS of 28 GHz MICROSTRIP PATCH ANTENNA for DIFFERENT TYPE FR4 CLADDINGS”, UUJFE, vol. 24, no. 2, pp. 265–288, 2019, doi: 10.17482/uumfd.548410.
ISNAD Hiçdurmaz, Bahadır - Gümüş, Ömer Faruk. “DESIGN and ANALYSIS of 28 GHz MICROSTRIP PATCH ANTENNA for DIFFERENT TYPE FR4 CLADDINGS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/2 (August 2019), 265-288. https://doi.org/10.17482/uumfd.548410.
JAMA Hiçdurmaz B, Gümüş ÖF. DESIGN and ANALYSIS of 28 GHz MICROSTRIP PATCH ANTENNA for DIFFERENT TYPE FR4 CLADDINGS. UUJFE. 2019;24:265–288.
MLA Hiçdurmaz, Bahadır and Ömer Faruk Gümüş. “DESIGN and ANALYSIS of 28 GHz MICROSTRIP PATCH ANTENNA for DIFFERENT TYPE FR4 CLADDINGS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 24, no. 2, 2019, pp. 265-88, doi:10.17482/uumfd.548410.
Vancouver Hiçdurmaz B, Gümüş ÖF. DESIGN and ANALYSIS of 28 GHz MICROSTRIP PATCH ANTENNA for DIFFERENT TYPE FR4 CLADDINGS. UUJFE. 2019;24(2):265-88.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.