Bu çalışma evsel nitelikli anaerobik çürütücü atıksuyunun (AÇAS) evsel nitelikli atık suların alıcı
ortam deşarj standartlarına uygun düzeyde arıtılmasında bakteri ve mikroalg kültürlerinin birlikte ve ayrı
ayrı kullanılmasının arıtım verimliliği üzerindeki etkisini incelemek üzere yürütülmüştür. Bakteri ve
mikroalg kültürlerinin birlikte kullanıldığı, AÇAS içeriğinin kademeli olarak arıtma tesisi deşarj suyu
(AD) ile seyreltilerek işletilen reaktörlerde ulaşılan arıtım verimleri kimyasal oksijen ihtiyacı (KOİ) için
%87,9, toplam organik karbon (TOK) için %86,6 ve inorganik karbon (İK) için %84,6 olmuştur. Bununla
birlikte atıksu muhtevasındaki fosfatın (PO4
3-
-P) %84’ü ve toplam azotun (TA) %100’ü giderilmiştir.
Diğer taraftan bakteri ve mikroalg kültürlerinin ayrı ayrı kullanılmasının karşılaştırıldığı deneylerde
mikroalglerin, atıksu arıtımında bakterilerden daha iyi bir arıtım sağladığı ancak her iki mikroorganizma
topluluğunun birlikte kullanılmasının çok daha etkin bir arıtım sağladığı tespit edilmiştir. Çalışma
sonunda Türkiye Su Kirliliği Kontrolü Yönetmeliği Evsel Nitelikli Atık Suların Alıcı Ortam Deşarj
Standartlarına (Sınıf: 3) uygun düzeyde arıtım sağlanmıştır.
Chang, H., APHA 2005. Standard Methods for the Examination of Water and Wastewater. 21st Edition, American Public Health Association, Washington DC, USA.
Bouterfas, R., Belkoura, M., Dauta, A. 2002. Light and temperature effects on the growth rate of three freshwater algae isolated from a eutrophic lake., Hydrobiologia 489, 207–217. doi: 10.1023/A:1023241006464:
Cai, T., Ge, X., Park, S. Y., Li, Y. 2013(a). Comparison of Synechocystis sp. PCC6803 and Nannochloropsis salina for lipid production using artificial seawater and nutrients from
anaerobic digestion effluent. Bioresource Technology, 144,255-260. doi: 10.1016/j.biortech.2013.06.101.
Cai, T., Park, S. Y., Racharaks, R., Li, Y. 2013(b). Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production. Applied
Energy, 108, 486-492. doi: 10.1016/j.apenergy.2013.03.056
Cheng, J., Ye, Q., Xu, J., Yang, Z., Zhou, J., Cen, K. 2016. Improving pollutants removal by microalgae Chlorella PY-ZU1 with 15%CO2 from undiluted anaerobic digestion effluent of food wastes with ozonation pretreatment. Bioresource Technology, 216, 273-279. doi:10.1016/j.biortech.2016.05.069
Cheng, J., Xu, J., Huang, Y., Li, Y., Zhou, J., Cen, K. 2015. Growth optimisation of microalga mutant at high CO2 concentration to purify undiluted anaerobic digestion effluent
of swine manure. Bioresource Technology, 177, 240-246. doi: 10.1016/j.biortech.2014.11.099
De˛bowski M., Szwaja S., Zielin´ski M., Kisielewska M., Stan´czyk-Mazanek E. 2017. The influence of anaerobic digestion effluents (ADEs) used as the nutrient sources for Chlorella sp. cultivation on fermentative biogas production. Waste Biomass Valor, 8, 1153–1161. doi: 10.1007/s12649-016-9667-1
Deng, X. Y., Gao, K., Zhang, R. C., Addy, M., Lu, Q., Ren, H. Y., ... & Ruan, R. 2017. Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient
removal and biomass production. Bioresource technology, 243, 417-425. doi: 10.1016/j.biortech.2017.06.141
Gürol, M. D., Özkan, M., Yatmaz, C., Keriş-Sen, Ü.D., Soydemir, G., Say, N., Sen, Ü. 2013. Mikroalglerden biyodizel üretiminde yenilikçi (innovative) yaklaşımlar, TÜBİTAK
1001 Projesi, Proje No:109Y296.
Hajar, H.A.A., Riefler, R.G. and Stuart, B.J., 2016. Anaerobic digestate as a nutrient medium for the growth of the green microalga Neochloris oleoabundans. Environmental
Engineering Research, 21(3), 265-275.doi: doi.org/10.4491/eer.2016.005
Hajar, H.A.A., Riefler, R.G. and Stuart, B.J., 2017. Cultivation of Scenedesmus dimorphus using anaerobic digestate as a nutrient medium. Bioprocess and biosystems engineering, 40(8), 1197-1207. doi: 10.1007/s00449-017-1780-4
Hulatt C. J., Lakaniemi A. M., Puhakka J. A., Thomas D. N. 2012. Energy demands of nitrogen supply in mass cultivation of two commercially important microalgal species,
Chlorella vulgaris and Dunaliella tertiolecta. Bioenergy Research, 5(3), 669-684. doi: 10.1007/s12155-011-9175-x
Ji, F., Liu, Y., Hao, R., Li, G., Zhou, Y., Dong, R. 2014. Biomass production and nutrients removal by a new microalga strain Desmodesmus sp. in anaerobic digestion wastewater. Bioresource Technology, 161, 200-207. doi:doi.org/10.1016/j.biortech.2014.03.034
Keris-Sen, U.D., Sen, U., Soydemir, G. and Gurol, M.D., 2014. An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency. Bioresource
technology, 152, 407-413. doi: 10.1016/j.biortech.2013.11.018
Keris-Sen, U.D. and Gurol, M.D., 2017. Using ozone for microalgal cell disruption to improve enzymatic saccharification of cellular carbohydrates. Biomass and Bioenergy, 105,
59-65. doi: 10.1016/j.biombioe.2017.06.023
Keriş-Şen, Ü. D. 2016. Mikroalglerin sudan ayrıştırılmasında ve biyoetanol üretiminde ozon ve ultrases kullanımı. Doktora Tezi, Gebze Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli
Kong Q., Li L., Martinez B., Chen P., Ruan R. 2010. Culture of microalgae Chlamydomonas Reinhardtii in wastewater for biomass feedstock production, Applied
Biochemistry and Biotechnology, 160 (1), 9-18. doi://doi.org/10.1007/s12010-009-8670-4
Levine R. B., Costanza-Robinson M. S., Spatafora G. A. 2011. Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and
biodiesel feedstock production, Biomass Bioenergy 35, 40-49. doi: 10.1016/j.biombioe.2010.08.035
Li, Y., Chen, Y.F., Chen, P., Min, M., Zhou, W., Martinez, B., Zhu, J. and Ruan, R., 2011. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource technology, 102(8), 5138-5144. doi: 10.1016/j.biortech.2011.01.091
Li Y.R., Tsai W.T., Hsu Y.C., Xie M.Z., Chen J.J. 2014. Comparison of autotrophic and mixotrophic cultivation of green microalgal for biodiesel production. Energy Procedia 52
371–376. doi: 10.1016/j.egypro.2014.07.088
Mandal S., Mallick N. 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biot, 84(2), 281-291.doi: 10.1007/s00253-009-1935-6
Mohammad Mirzaie M.A., Kalbasi M., Mousavi S.M., Ghobadian B. 2016. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Prep Biochem Biotechnol. 2016;46(2):150-6. doi: 10.1080/10826068.2014.995812
Park, J., Jin, H. F., Lim, B. R., Park, K. Y., & Lee, K. 2010. Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp.
Bioresource technology, 101(22), 8649-8657. doi: 10.1016/j.biortech.2010.06.142
Pittman J. K., Dean A. P., Osundeko O. 2011. The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102(1), 17-25.
doi: 10.1016/j.biortech.2010.06.035
Pruvost J., Van Vooren G., Le Gouic B., Couzinet-Mossion A., Legrand J. 2011. Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for
biodiesel application. Bioresource Technology, 102(1), 150-158. doi: 10.1016/j.biortech.2010.06.153
Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. and Stanier, R.Y., 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111(1), pp.1-61. doi: 10.1099/00221287-111-1-1
Singh, M., Reynolds, D. L., Das, K. C. 2011. Microalgal system for treatment of effluent from poultry litter anaerobic digestion, Bioresource Technology, 102(23), 10841-10848.
doi: 10.1016/j.biortech.2011.09.037
Su Kirliliği Kontrolü Yönetmeliği, Resmî Gazete Tarihi: 31.12.2004 Resmî Gazete Sayısı: 25687 http://www.resmigazete.gov.tr/eskiler/2008/02/20080213-13.htm
(Erişim Tarihi 12/2/2019)
Sydney E. B., da Silva T. E., Tokarski A., Novak A. C., de Carvalho J. C., Woiciecohwski A. L., Larroche C., Soccol C. R. 2011. Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Applied Energy, 88 (10), 3291-3294. doi: 10.1016/j.apenergy.2010.11.024
Uggetti, E., Sialve, B., Latrille, E., Steyer, J.-P. 2014. Anaerobic digestate as substrate for microalgae culture: The role of ammonium concentration on the microalgae productivity. Bioresource Technology, 152, 437-443. doi: 10.1016/j.biortech.2013.11.036
Vaneeckhaute, C., Meers, E., Michels, E., Christiaens, P., Tack, F. M. G. 2012. Fate of macronutrients in water treatment of digestate using vibrating reversed osmosis, Water, Air, & Soil Pollution, 223(4), 1593-1603. doi: 10.1007/s11270-011-0967-6
Wang, H., Zhang, W., Chen, L., Wang, J., Liu, T. 2013. The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresource Technology, 128, 745-750. doi: 10.1016/j.biortech.2012.10.158
Wang, L., Wang, Y., Chen, P., Ruan, R. 2010. Semi-continuous cultivation of Chlorella vulgaris for treating undigested and digested dairy manures, Applied Biochemistry and
Biotechnology, 162(8), 2324-2332. doi: 10.1007/s12010-010-9005-1
Xia, A., Murphy, J. D. 2016. Microalgal cultivation in treating liquid digestate from biogas systems. Trends in Biotechnology, 34(4), 264-275. doi: 10.1016/j.tibtech.2015.12.010
Xu, J., Zhao, Y., Zhao, G., Zhang, H. 2015. Nutrient removal and biogas upgrading by integrating freshwater algae cultivation with piggery anaerobic digestate liquid treatment.
Applied Microbiology and Biotechnology, 99(15), 6493-6501.doi:10.1007/s00253-015-6537-x
Yang, S., Xu, J., Wang, Z.M., Bao, L.J. and Zeng, E.Y., 2017. Cultivation of oleaginous microalgae for removal of nutrients and heavy metals from biogas digestates. Journal of
Cleaner Production, 164, 793-803. doi: 10.1016/j.jclepro.2017.06.221
Yang, L., Tan, X., Li, D., Chu, H., Zhou, X., Zhang, Y., & Yu, H. 2015. Nutrients removal and lipids production by Chlorella pyrenoidosa cultivation using anaerobic digested starch
wastewater and alcohol wastewater. Bioresource technology, 181, 54-61. doi: 10.1016/j.biortech.2015.01.043
Treatment of Anaerobic Digestion Effluent in Microalgal Bioreactors
This study was performed to investigate the effect of combined and separate use of bacteria
and microalgae cultures on the efficiency of the treatment domestic anaerobic digestion (AD) effluent to
meet the domestic wastewater discharge standards. AD effluent was diluted with waste water treatment
plant discharge in different proportions in separate reactors and the treatment efficiency of reactors was
compared regarding nutrient removal yields. The highest treatment efficiency was obtained with
combined use of bacteria and microalgae cultures and corresponding removal efficiencies were 87.9% for
COD, 86.6% for TOC, 84.6% for IC, 84% for orthophosphates and for 100% total nitrogen. On the other
hand, it was found that although the treatment efficiencies in the reactors including only microalgae
cultures are higher than those including only bacterial cultures, and the combined use of microalgal and
bacteria cultures still has the highest treatment efficiency among others at the end of the study, AD
effluent was successfully treated according the Turkey Water Pollution Control Regulation Domestic
Wastewater Discharge Standards (Class:3).
Chang, H., APHA 2005. Standard Methods for the Examination of Water and Wastewater. 21st Edition, American Public Health Association, Washington DC, USA.
Bouterfas, R., Belkoura, M., Dauta, A. 2002. Light and temperature effects on the growth rate of three freshwater algae isolated from a eutrophic lake., Hydrobiologia 489, 207–217. doi: 10.1023/A:1023241006464:
Cai, T., Ge, X., Park, S. Y., Li, Y. 2013(a). Comparison of Synechocystis sp. PCC6803 and Nannochloropsis salina for lipid production using artificial seawater and nutrients from
anaerobic digestion effluent. Bioresource Technology, 144,255-260. doi: 10.1016/j.biortech.2013.06.101.
Cai, T., Park, S. Y., Racharaks, R., Li, Y. 2013(b). Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production. Applied
Energy, 108, 486-492. doi: 10.1016/j.apenergy.2013.03.056
Cheng, J., Ye, Q., Xu, J., Yang, Z., Zhou, J., Cen, K. 2016. Improving pollutants removal by microalgae Chlorella PY-ZU1 with 15%CO2 from undiluted anaerobic digestion effluent of food wastes with ozonation pretreatment. Bioresource Technology, 216, 273-279. doi:10.1016/j.biortech.2016.05.069
Cheng, J., Xu, J., Huang, Y., Li, Y., Zhou, J., Cen, K. 2015. Growth optimisation of microalga mutant at high CO2 concentration to purify undiluted anaerobic digestion effluent
of swine manure. Bioresource Technology, 177, 240-246. doi: 10.1016/j.biortech.2014.11.099
De˛bowski M., Szwaja S., Zielin´ski M., Kisielewska M., Stan´czyk-Mazanek E. 2017. The influence of anaerobic digestion effluents (ADEs) used as the nutrient sources for Chlorella sp. cultivation on fermentative biogas production. Waste Biomass Valor, 8, 1153–1161. doi: 10.1007/s12649-016-9667-1
Deng, X. Y., Gao, K., Zhang, R. C., Addy, M., Lu, Q., Ren, H. Y., ... & Ruan, R. 2017. Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient
removal and biomass production. Bioresource technology, 243, 417-425. doi: 10.1016/j.biortech.2017.06.141
Gürol, M. D., Özkan, M., Yatmaz, C., Keriş-Sen, Ü.D., Soydemir, G., Say, N., Sen, Ü. 2013. Mikroalglerden biyodizel üretiminde yenilikçi (innovative) yaklaşımlar, TÜBİTAK
1001 Projesi, Proje No:109Y296.
Hajar, H.A.A., Riefler, R.G. and Stuart, B.J., 2016. Anaerobic digestate as a nutrient medium for the growth of the green microalga Neochloris oleoabundans. Environmental
Engineering Research, 21(3), 265-275.doi: doi.org/10.4491/eer.2016.005
Hajar, H.A.A., Riefler, R.G. and Stuart, B.J., 2017. Cultivation of Scenedesmus dimorphus using anaerobic digestate as a nutrient medium. Bioprocess and biosystems engineering, 40(8), 1197-1207. doi: 10.1007/s00449-017-1780-4
Hulatt C. J., Lakaniemi A. M., Puhakka J. A., Thomas D. N. 2012. Energy demands of nitrogen supply in mass cultivation of two commercially important microalgal species,
Chlorella vulgaris and Dunaliella tertiolecta. Bioenergy Research, 5(3), 669-684. doi: 10.1007/s12155-011-9175-x
Ji, F., Liu, Y., Hao, R., Li, G., Zhou, Y., Dong, R. 2014. Biomass production and nutrients removal by a new microalga strain Desmodesmus sp. in anaerobic digestion wastewater. Bioresource Technology, 161, 200-207. doi:doi.org/10.1016/j.biortech.2014.03.034
Keris-Sen, U.D., Sen, U., Soydemir, G. and Gurol, M.D., 2014. An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency. Bioresource
technology, 152, 407-413. doi: 10.1016/j.biortech.2013.11.018
Keris-Sen, U.D. and Gurol, M.D., 2017. Using ozone for microalgal cell disruption to improve enzymatic saccharification of cellular carbohydrates. Biomass and Bioenergy, 105,
59-65. doi: 10.1016/j.biombioe.2017.06.023
Keriş-Şen, Ü. D. 2016. Mikroalglerin sudan ayrıştırılmasında ve biyoetanol üretiminde ozon ve ultrases kullanımı. Doktora Tezi, Gebze Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli
Kong Q., Li L., Martinez B., Chen P., Ruan R. 2010. Culture of microalgae Chlamydomonas Reinhardtii in wastewater for biomass feedstock production, Applied
Biochemistry and Biotechnology, 160 (1), 9-18. doi://doi.org/10.1007/s12010-009-8670-4
Levine R. B., Costanza-Robinson M. S., Spatafora G. A. 2011. Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and
biodiesel feedstock production, Biomass Bioenergy 35, 40-49. doi: 10.1016/j.biombioe.2010.08.035
Li, Y., Chen, Y.F., Chen, P., Min, M., Zhou, W., Martinez, B., Zhu, J. and Ruan, R., 2011. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource technology, 102(8), 5138-5144. doi: 10.1016/j.biortech.2011.01.091
Li Y.R., Tsai W.T., Hsu Y.C., Xie M.Z., Chen J.J. 2014. Comparison of autotrophic and mixotrophic cultivation of green microalgal for biodiesel production. Energy Procedia 52
371–376. doi: 10.1016/j.egypro.2014.07.088
Mandal S., Mallick N. 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biot, 84(2), 281-291.doi: 10.1007/s00253-009-1935-6
Mohammad Mirzaie M.A., Kalbasi M., Mousavi S.M., Ghobadian B. 2016. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Prep Biochem Biotechnol. 2016;46(2):150-6. doi: 10.1080/10826068.2014.995812
Park, J., Jin, H. F., Lim, B. R., Park, K. Y., & Lee, K. 2010. Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp.
Bioresource technology, 101(22), 8649-8657. doi: 10.1016/j.biortech.2010.06.142
Pittman J. K., Dean A. P., Osundeko O. 2011. The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102(1), 17-25.
doi: 10.1016/j.biortech.2010.06.035
Pruvost J., Van Vooren G., Le Gouic B., Couzinet-Mossion A., Legrand J. 2011. Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for
biodiesel application. Bioresource Technology, 102(1), 150-158. doi: 10.1016/j.biortech.2010.06.153
Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. and Stanier, R.Y., 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111(1), pp.1-61. doi: 10.1099/00221287-111-1-1
Singh, M., Reynolds, D. L., Das, K. C. 2011. Microalgal system for treatment of effluent from poultry litter anaerobic digestion, Bioresource Technology, 102(23), 10841-10848.
doi: 10.1016/j.biortech.2011.09.037
Su Kirliliği Kontrolü Yönetmeliği, Resmî Gazete Tarihi: 31.12.2004 Resmî Gazete Sayısı: 25687 http://www.resmigazete.gov.tr/eskiler/2008/02/20080213-13.htm
(Erişim Tarihi 12/2/2019)
Sydney E. B., da Silva T. E., Tokarski A., Novak A. C., de Carvalho J. C., Woiciecohwski A. L., Larroche C., Soccol C. R. 2011. Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Applied Energy, 88 (10), 3291-3294. doi: 10.1016/j.apenergy.2010.11.024
Uggetti, E., Sialve, B., Latrille, E., Steyer, J.-P. 2014. Anaerobic digestate as substrate for microalgae culture: The role of ammonium concentration on the microalgae productivity. Bioresource Technology, 152, 437-443. doi: 10.1016/j.biortech.2013.11.036
Vaneeckhaute, C., Meers, E., Michels, E., Christiaens, P., Tack, F. M. G. 2012. Fate of macronutrients in water treatment of digestate using vibrating reversed osmosis, Water, Air, & Soil Pollution, 223(4), 1593-1603. doi: 10.1007/s11270-011-0967-6
Wang, H., Zhang, W., Chen, L., Wang, J., Liu, T. 2013. The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresource Technology, 128, 745-750. doi: 10.1016/j.biortech.2012.10.158
Wang, L., Wang, Y., Chen, P., Ruan, R. 2010. Semi-continuous cultivation of Chlorella vulgaris for treating undigested and digested dairy manures, Applied Biochemistry and
Biotechnology, 162(8), 2324-2332. doi: 10.1007/s12010-010-9005-1
Xia, A., Murphy, J. D. 2016. Microalgal cultivation in treating liquid digestate from biogas systems. Trends in Biotechnology, 34(4), 264-275. doi: 10.1016/j.tibtech.2015.12.010
Xu, J., Zhao, Y., Zhao, G., Zhang, H. 2015. Nutrient removal and biogas upgrading by integrating freshwater algae cultivation with piggery anaerobic digestate liquid treatment.
Applied Microbiology and Biotechnology, 99(15), 6493-6501.doi:10.1007/s00253-015-6537-x
Yang, S., Xu, J., Wang, Z.M., Bao, L.J. and Zeng, E.Y., 2017. Cultivation of oleaginous microalgae for removal of nutrients and heavy metals from biogas digestates. Journal of
Cleaner Production, 164, 793-803. doi: 10.1016/j.jclepro.2017.06.221
Yang, L., Tan, X., Li, D., Chu, H., Zhou, X., Zhang, Y., & Yu, H. 2015. Nutrients removal and lipids production by Chlorella pyrenoidosa cultivation using anaerobic digested starch
wastewater and alcohol wastewater. Bioresource technology, 181, 54-61. doi: 10.1016/j.biortech.2015.01.043
Keriş Şen, Ülker Diler. “ANAEROBİK ÇÜRÜTÜCÜ ATIKSULARININ MİKROALG REAKTÖRLERİNDE ARITILMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, sy. 3 (Aralık 2019): 89-108. https://doi.org/10.17482/uumfd.530127.
EndNote
Keriş Şen ÜD (01 Aralık 2019) ANAEROBİK ÇÜRÜTÜCÜ ATIKSULARININ MİKROALG REAKTÖRLERİNDE ARITILMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 3 89–108.
IEEE
Ü. D. Keriş Şen, “ANAEROBİK ÇÜRÜTÜCÜ ATIKSULARININ MİKROALG REAKTÖRLERİNDE ARITILMASI”, UUJFE, c. 24, sy. 3, ss. 89–108, 2019, doi: 10.17482/uumfd.530127.
ISNAD
Keriş Şen, Ülker Diler. “ANAEROBİK ÇÜRÜTÜCÜ ATIKSULARININ MİKROALG REAKTÖRLERİNDE ARITILMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/3 (Aralık 2019), 89-108. https://doi.org/10.17482/uumfd.530127.
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr