Araştırma Makalesi
BibTex RIS Kaynak Göster

ÇEŞİTLİ GÜDÜM PROBLEMLERİ İÇİN ORTAK BİR TASARIM METODU

Yıl 2020, Cilt: 25 Sayı: 2, 713 - 728, 31.08.2020
https://doi.org/10.17482/uumfd.635086

Öz

Artan operasyonel gereksinimlerden ötürü, yörünge şekillendirmesine ilişkin çalışmalarda literatürde artış olmuştur. Füze güdümünün ilk ve temel amacı füzeyi hedefe sıfır kaçırma mesafesi ile ya da bunu en aza indirerek hedefe ulaştırmaktır. İkinci ve popüler bir gereksinim ise tanksavar füzeleri ve dik vuruş özelliğine sahip güdümlü mühimmatlar için vuruş açısının kontrolüdür. Yörünge izleme, ya da yol noktası takibi konuları da füze sistemlerinin ilgi alanında olduğu kadar otonom tüm araçlar ile insansız hava araçlarını da ilgilendiren konulardır. Bunlara ilaveten, mesafeli hedef takibi de bu tarz sistemlerde diğer bir araştırma konusudur. Bu makalede, üç problemin güdüm algoritmaları tasarımı açısından ortak bir stratejiye dayanarak çözülebileceği gösterilmektedir. Bunun için oransal seyrüsefer güdüme bir yanlılık terimi eklenerek takip açıklarının bir fonksiyonu olacak şekilde tasarım yapılırken, sabit hedef ile birlikte sanal hedef konsepti de uygulanmıştır. Önerilen güdüm kanunu varış zamanı ya da gidilecek mesafe kestirimine ihtiyaç duymaz. Tasarımın performansı, vuruş açısı, yörünge takibi ve mesafeli hedef takibi olarak üç ayrı benzetimde incelenmiştir. 

Kaynakça

  • 1. Chang, K.R., Hanju, C., ve Tahk, M.J. (2005) Optimal Guidance Laws with Terminal Impact Angle Constraint, AIAA Journal of Guidance, Control, and Dynamics, 28(4), 724–732. doi: 10.2514/1.8392
  • 2. Kim, B.S., Lee, J.G., Hyung, S. ve Han, H.S. (1998) Biased PNG Law for Impact with Angular Constraint, IEEE Transactions on Aerospace and Electronic Systems, 34(1), 277–288. doi:10.1109/7.640285
  • 3. Erer, K.S. ve Merttopçuoglu, O. (2012) Indirect Impact-Angle-Control Against Stationary Targets Using Biased Pure Proportional Navigation, AIAA Journal of Guidance, Control, and Dynamics, 35(2), 700–704. doi:10.2514/1.52105
  • 4. Tekin, R. ve Erer, K.S. (2015) Switched-Gain Guidance for Impact Angle Control under Physical Constraints, AIAA Journal of Guidance, Control, and Dynamics, 38(2), pp. 205-216. doi:10.2514/1.G000766
  • 5. Kim, T.H., Bong, G., Park, B.G. ve Tahk M.J. (2013) Bias-Shaping Method for Biased Proportional Navigation with Terminal-Angle Constraint, AIAA Journal of Guidance, Control, and Dynamics, 36(6), 1810–1816. doi:10.2514/1.59252
  • 6. Dubins, L. (1957) On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents, American Journal of Mathematics, 79(3), 497–516. doi:10.2307/2372560
  • 7. Ratnoo, A., P.B. Sujit, P.B. ve Kothari, M. (2011) Adaptive Optimal Path Following for High Wind Flights,” 18th IFAC World Congress, Elsevier Science Ltd., Kidlington, Oxford, 12985–12990. doi:10.3182/20110828-6-IT-1002.03720
  • 8. Park, S., Deystt, J. ve How, J.P. (2007) Performance and Lyapunov Stability of a Nonlinear Path-Following Guidance Method, AIAA Journal of Guidance, Control, and Dynamics, 30(6), 1718–1728. doi:10.2514/1.28957
  • 9. Medagoda, E.D.B. ve Gibbens, P.W. (2010) Synthetic-Waypoint Guidance Algorithm for Following a Desired Flight Trajectory, AIAA Journal of Guidance, Control, and Dynamics, 33(2), 601–606. doi:10.2514/1.46204
  • 10. Ratnoo, A., Hayoun, S.Y., Granot, A. ve Shima, T. (2015) Path Following Using Trajectory Shaping Guidance, AIAA Journal of Guidance, Control, and Dynamics, 38(1), 106–116. doi: doi:10.2514/1.G000300
  • 11. Sujit, P.B., Saripalli, S. ve Sousa, B.J. (2014) Unmanned Aerial Vehicle Path Following: A Survey and Analysis of Algorithms for Fixed-WingUnmanned Aerial Vehicles, IEEE Control Systems, 34(1), 42–59. doi:10.1109/MCS.2013.2287568
  • 12. Shames, I., Dasgupta, S., Fidan, B. ve Anderson, D.O.B. (2012) Circumnavigation Using Distance Measurements Under Slow Drift, IEEE Transactions on Automatic Control, 57(4), 889–903. doi:10.1109/TAC.2011.2173417
  • 13. Park, S. (2016) Circling over a Target with Relative Side Bearing, AIAA Journal of Guidance, Control, and Dynamics, 39(6), 1454–1458. doi:10.2514/1.G001421
  • 14. Frew, E.W., Lawrence, D.A. ve Morris, S. (2008) Coordinated Standoff Tracking of Moving Targets Using Lyapunov Guidance Vector Fields, Journal of Guidance, Control, and Dynamics, 31(2), 290–306. doi:10.2514/1.30507
  • 15. Erer, K.S. (2015) Biased Proportional Navigation Guidance for Impact Angle Control with Extension to Three-Dimensional Engagements, Doktora Tezi, Makina Mühendisliği, Orta Doğu Teknik Üniversitesi, Ankara, Türkiye.
  • 16. Erer, K. S., Tekin, R. ve Özgören (2015) M. K. Look Angle Constrained Impact Angle Control Based on Proportional Navigation, AIAA Guidance, Navigation, and Control Conference, Kissimee, FL, USA. /doi.org/10.2514/6.2015-0091

A Common Design Framework for Various Guidance Problems

Yıl 2020, Cilt: 25 Sayı: 2, 713 - 728, 31.08.2020
https://doi.org/10.17482/uumfd.635086

Öz

With rising interest and operation requirements, literature on the trajectory shaping guidance algorithms have increased. The primary objective of missile guidance is to have zero miss or near miss distance at the end of the flight. One of the popular secondary objectives is impact angle control, which might be preferred for anti-tank missiles or vertical impact guided munitions in order to increase the warhead effectiveness. Path following or way point tracking problems are also in the scope of missile systems as well as any autonomous vehicles or unmanned aerial vehicles. In addition to these, standoff target tracking is also another field of study for such systems. In this paper, a common framework for these three trajectory shaping problems is introduced. It is shown that they can base on a same strategy in terms of guidance algorithm design. For this purpose, a bias term to enhance proportional navigation guidance is designed. The design bases on an error signal which is a function of pursuit angles against a stationary target with the concept of virtual target. The performance of the proposed guidance law is demonstrated in simulations with no need of time-to-go or range-to-go estimation.

Kaynakça

  • 1. Chang, K.R., Hanju, C., ve Tahk, M.J. (2005) Optimal Guidance Laws with Terminal Impact Angle Constraint, AIAA Journal of Guidance, Control, and Dynamics, 28(4), 724–732. doi: 10.2514/1.8392
  • 2. Kim, B.S., Lee, J.G., Hyung, S. ve Han, H.S. (1998) Biased PNG Law for Impact with Angular Constraint, IEEE Transactions on Aerospace and Electronic Systems, 34(1), 277–288. doi:10.1109/7.640285
  • 3. Erer, K.S. ve Merttopçuoglu, O. (2012) Indirect Impact-Angle-Control Against Stationary Targets Using Biased Pure Proportional Navigation, AIAA Journal of Guidance, Control, and Dynamics, 35(2), 700–704. doi:10.2514/1.52105
  • 4. Tekin, R. ve Erer, K.S. (2015) Switched-Gain Guidance for Impact Angle Control under Physical Constraints, AIAA Journal of Guidance, Control, and Dynamics, 38(2), pp. 205-216. doi:10.2514/1.G000766
  • 5. Kim, T.H., Bong, G., Park, B.G. ve Tahk M.J. (2013) Bias-Shaping Method for Biased Proportional Navigation with Terminal-Angle Constraint, AIAA Journal of Guidance, Control, and Dynamics, 36(6), 1810–1816. doi:10.2514/1.59252
  • 6. Dubins, L. (1957) On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents, American Journal of Mathematics, 79(3), 497–516. doi:10.2307/2372560
  • 7. Ratnoo, A., P.B. Sujit, P.B. ve Kothari, M. (2011) Adaptive Optimal Path Following for High Wind Flights,” 18th IFAC World Congress, Elsevier Science Ltd., Kidlington, Oxford, 12985–12990. doi:10.3182/20110828-6-IT-1002.03720
  • 8. Park, S., Deystt, J. ve How, J.P. (2007) Performance and Lyapunov Stability of a Nonlinear Path-Following Guidance Method, AIAA Journal of Guidance, Control, and Dynamics, 30(6), 1718–1728. doi:10.2514/1.28957
  • 9. Medagoda, E.D.B. ve Gibbens, P.W. (2010) Synthetic-Waypoint Guidance Algorithm for Following a Desired Flight Trajectory, AIAA Journal of Guidance, Control, and Dynamics, 33(2), 601–606. doi:10.2514/1.46204
  • 10. Ratnoo, A., Hayoun, S.Y., Granot, A. ve Shima, T. (2015) Path Following Using Trajectory Shaping Guidance, AIAA Journal of Guidance, Control, and Dynamics, 38(1), 106–116. doi: doi:10.2514/1.G000300
  • 11. Sujit, P.B., Saripalli, S. ve Sousa, B.J. (2014) Unmanned Aerial Vehicle Path Following: A Survey and Analysis of Algorithms for Fixed-WingUnmanned Aerial Vehicles, IEEE Control Systems, 34(1), 42–59. doi:10.1109/MCS.2013.2287568
  • 12. Shames, I., Dasgupta, S., Fidan, B. ve Anderson, D.O.B. (2012) Circumnavigation Using Distance Measurements Under Slow Drift, IEEE Transactions on Automatic Control, 57(4), 889–903. doi:10.1109/TAC.2011.2173417
  • 13. Park, S. (2016) Circling over a Target with Relative Side Bearing, AIAA Journal of Guidance, Control, and Dynamics, 39(6), 1454–1458. doi:10.2514/1.G001421
  • 14. Frew, E.W., Lawrence, D.A. ve Morris, S. (2008) Coordinated Standoff Tracking of Moving Targets Using Lyapunov Guidance Vector Fields, Journal of Guidance, Control, and Dynamics, 31(2), 290–306. doi:10.2514/1.30507
  • 15. Erer, K.S. (2015) Biased Proportional Navigation Guidance for Impact Angle Control with Extension to Three-Dimensional Engagements, Doktora Tezi, Makina Mühendisliği, Orta Doğu Teknik Üniversitesi, Ankara, Türkiye.
  • 16. Erer, K. S., Tekin, R. ve Özgören (2015) M. K. Look Angle Constrained Impact Angle Control Based on Proportional Navigation, AIAA Guidance, Navigation, and Control Conference, Kissimee, FL, USA. /doi.org/10.2514/6.2015-0091
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Raziye Tekin 0000-0001-7628-962X

Koray Savaş Erer Bu kişi benim 0000-0002-3349-6730

Yayımlanma Tarihi 31 Ağustos 2020
Gönderilme Tarihi 20 Ekim 2019
Kabul Tarihi 12 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 25 Sayı: 2

Kaynak Göster

APA Tekin, R., & Erer, K. S. (2020). ÇEŞİTLİ GÜDÜM PROBLEMLERİ İÇİN ORTAK BİR TASARIM METODU. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(2), 713-728. https://doi.org/10.17482/uumfd.635086
AMA Tekin R, Erer KS. ÇEŞİTLİ GÜDÜM PROBLEMLERİ İÇİN ORTAK BİR TASARIM METODU. UUJFE. Ağustos 2020;25(2):713-728. doi:10.17482/uumfd.635086
Chicago Tekin, Raziye, ve Koray Savaş Erer. “ÇEŞİTLİ GÜDÜM PROBLEMLERİ İÇİN ORTAK BİR TASARIM METODU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25, sy. 2 (Ağustos 2020): 713-28. https://doi.org/10.17482/uumfd.635086.
EndNote Tekin R, Erer KS (01 Ağustos 2020) ÇEŞİTLİ GÜDÜM PROBLEMLERİ İÇİN ORTAK BİR TASARIM METODU. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25 2 713–728.
IEEE R. Tekin ve K. S. Erer, “ÇEŞİTLİ GÜDÜM PROBLEMLERİ İÇİN ORTAK BİR TASARIM METODU”, UUJFE, c. 25, sy. 2, ss. 713–728, 2020, doi: 10.17482/uumfd.635086.
ISNAD Tekin, Raziye - Erer, Koray Savaş. “ÇEŞİTLİ GÜDÜM PROBLEMLERİ İÇİN ORTAK BİR TASARIM METODU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25/2 (Ağustos 2020), 713-728. https://doi.org/10.17482/uumfd.635086.
JAMA Tekin R, Erer KS. ÇEŞİTLİ GÜDÜM PROBLEMLERİ İÇİN ORTAK BİR TASARIM METODU. UUJFE. 2020;25:713–728.
MLA Tekin, Raziye ve Koray Savaş Erer. “ÇEŞİTLİ GÜDÜM PROBLEMLERİ İÇİN ORTAK BİR TASARIM METODU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 25, sy. 2, 2020, ss. 713-28, doi:10.17482/uumfd.635086.
Vancouver Tekin R, Erer KS. ÇEŞİTLİ GÜDÜM PROBLEMLERİ İÇİN ORTAK BİR TASARIM METODU. UUJFE. 2020;25(2):713-28.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr